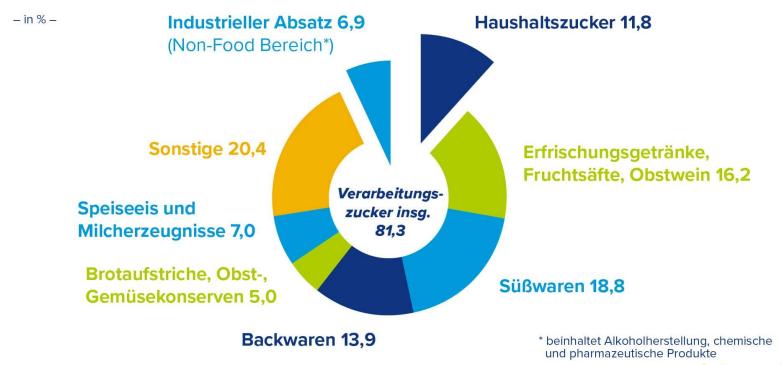
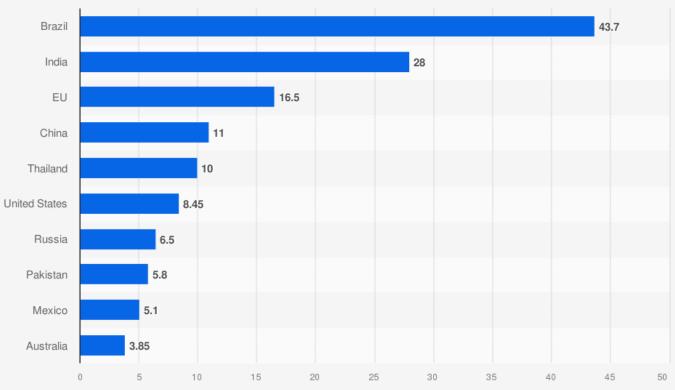
Zuckerrübe LT3 - Wintersemester 2025/26 Prof. Dr. Carl-Philipp Federolf 06.10.2025


Herkunft der Beta-Rübe

- Ursprungs-Region:
 - zwischen Kaspischem Meer und dem Kaukasus
 - Küstenregionen des Schwarzen Meers
- Genetische Herkunft
 - primitive Blattrüben und Formen mit verdickter Wurzel
 - diese werden ab dem 16. & 17 Jahrhundert "züchterisch" bearbeitet und es entsteht der Nordwest-Europäische sekundäre Genpool dieser beinhaltet
 - Blattrüben wie Mangold
 - Wurzelrüben
 - Zuckerrübe (ab dem 18. Jhd.) Andreas Sigismund Marggraf Massenauslese

 weißen schlesischen Futterrübe (Franz Carl Achard)
 - Runkelrüben (ab dem 18. Jhd.) z.B. Futterrüben
 - Speiserüben (ab dem 19. Jhd.) z.B. Rote Beete

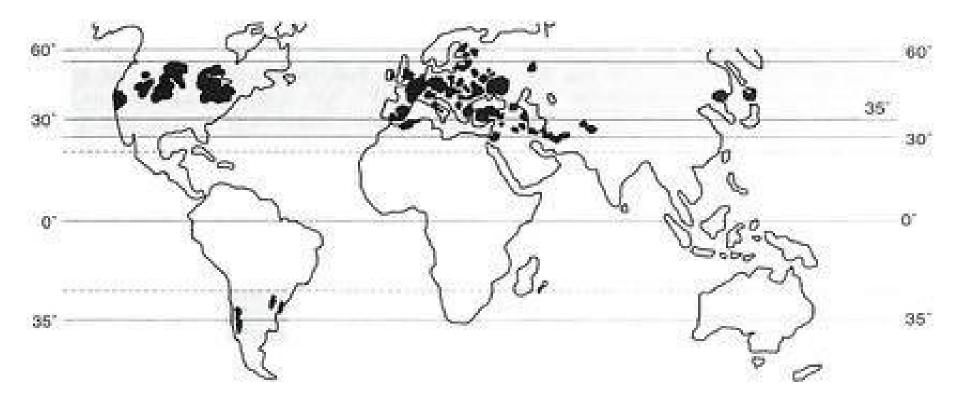

Zuckerrübe: Verwertung

INLANDSABSATZ NACH EMPFANGERGRUPPEN 2021/22

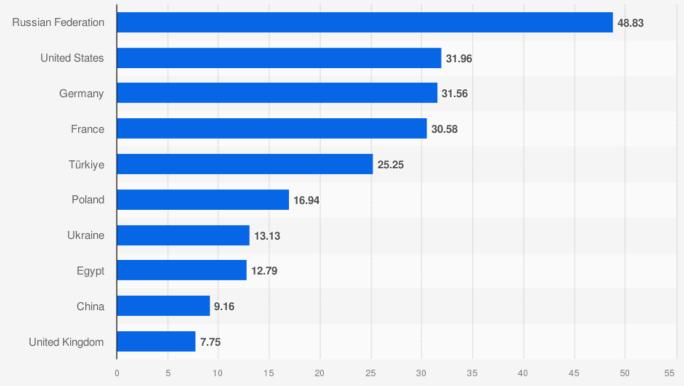
Quelle: www.zuckerverbaende.de/

Sugar production worldwide in 2024/25, by leading country (in million metric tons)*

Production in million metric tons


Source

US Department of Agriculture © Statista 2025


Additional Information:

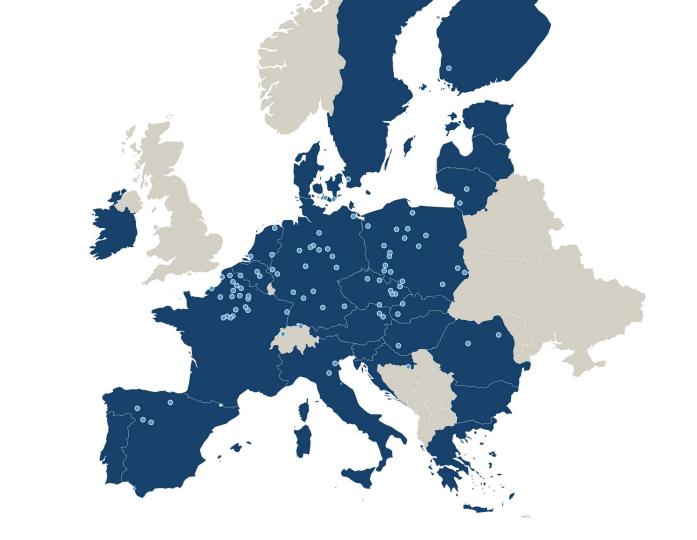
Worldwide; US Department of Agriculture; Marketing year 2024/2025

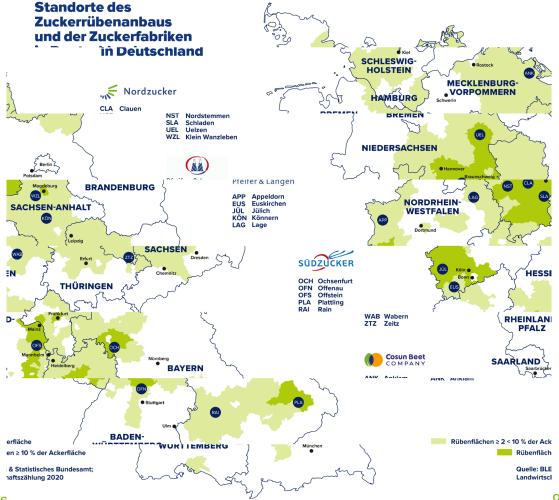
Anbauregionen - weltweit

Leading sugar beet producers worldwide in 2023, based on production volume (in million metric tons)

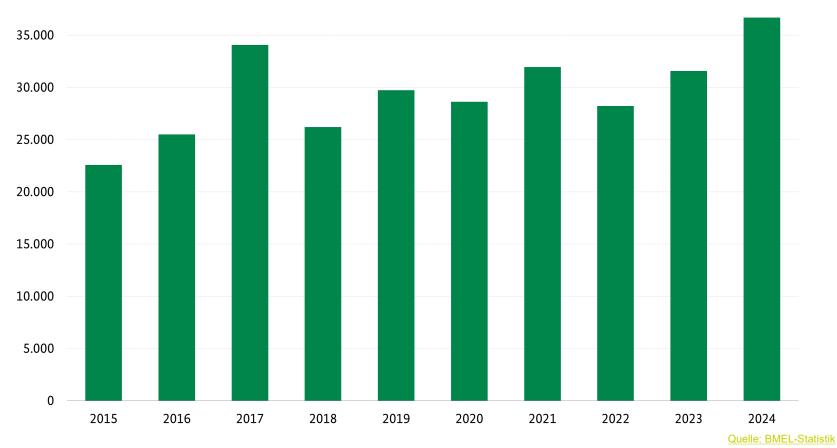
Production in thousand metric tons

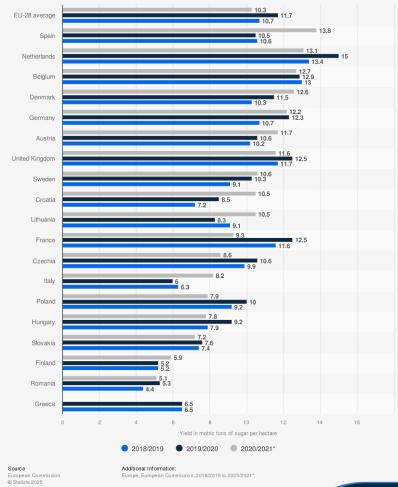
Source FAO


© Statista 2025


Additional Information:

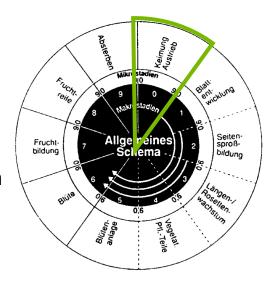
Worldwide; FAO; 2023; Data accessed on February 6, 2025





Erntemenge von Zuckerrüben in Deutschland In 1.000 Tonnen

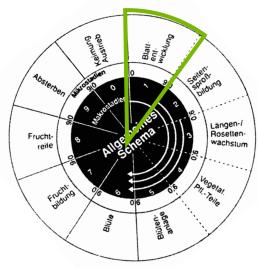
Average yield of sugar from beets in selected European countries in 2018/2019 and 2020/2021 (in metric tons of sugar per hectare)*



Biologie/Morphologie - Beta vulgaris

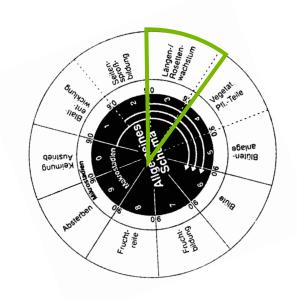
- Gattung Beta Gänsefußgewächse (Chenopodiaceae)
- zweijährige, fremdbefruchtende Pflanze
 - Erstes Jahr Blattrosette + Rübenkörper → technologische Reife FC 49
 - Zweites Jahr Samenträger

Makrostadium 0: Keimung

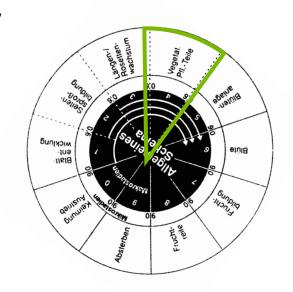

- 00 Trockener Samen
- 01 Quellung: Beginn der Wasseraufnahme des Samens
- 03 Ende der Samenquellung: Samenschale geöffnet; ggf. Pille geplatzt
- 05 Keimwurzel aus dem Samen bzw. der Pille ausgetreten
- 07 Keimspross aus dem Samen bzw. der Pille ausgetreten
- 09 Auflaufen: Keimspross durchbricht Bodenoberfläche

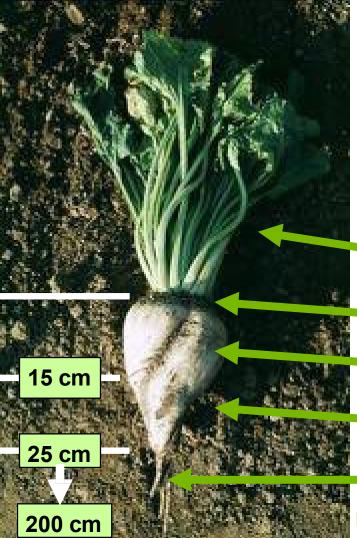
Makrostadium 1: Blattentwicklung (Jugendentwicklung)

- 10 Keimblattstadium: Keimblätter waagerecht entfaltet;
 - 1. Laubblatt stecknadelkopfgross
- 11 1. Laubblatt deutlich sichtbar, erbsengross
- 12 2 Laubblätter (1. Blattpaar) entfaltet
- 14 4 Laubblätter (2. Blattpaar) entfaltet
- 15 5 Laubblätter entfaltet


19 9 und mehr Laubblätter entfaltet

Makrostadium 3: Rosettenwachstum (Schliessen des **Bestandes**)


- 31 Beginn Bestandesschluss: 10% der Pflanzen benachbarter Reihen berühren sich
- 32 20% der Pflanzen benachbarter Reihen berühren sich
- 33 30% der Pflanzen benachbarter Reihen berühren sich


39 Bestandesschluss: über 90% der Pflanzen benachbarter Reihen berühren sich

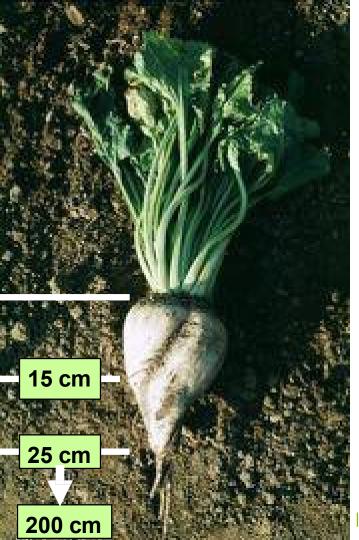
Makrostadium 4: Entwicklung vegetativer Pflanzenteile – Rübenkörper

Rübenkörper hat erntefähige Grösse 49 erreicht

Morphologie des Rübenkörpers

Wasserbedarf: 50 I je Rübe

Blattapparat


Rübenkopf = Epikotyl

Rübenkörper = Hypokotyl

Faserwurzel = Nährstoffaufnahme

Pfahlwurzel = Wasseraufnahme

Prof. Dr. Carl-Philipp Federolf | Crop Production Systems | 17

Morphologie des Rübenkörpers

Blatt:

Optimal: 0,5 m² Blattfläche/Rübe

= 300 g Frischmasse

= 40 g Trockenmasse

= 20-30 Blätter/Rübe

Rübenkörper

800 - 1200 g Frischmasse

200 - 300 g Trockenmasse

160 - 240 g Zucker

650 - 1000 cm³ Volumen

Einflussfaktoren auf den Rübenertrag

- Zeitraum Feldaufgang bis Reihenschluss entscheidend
- schneller Feldaufgang
- Strahlung + Temperatur ab Feldaufgang
- Temperatursumme Feldaufgang Ernte
- ausreichende Wasserversorgung im Spätsommer/Herbst

Einflussfaktoren auf den Zuckergehalt

- Strahlung August Oktober
- Blattlebensdauer der produktivsten Blätter
- geringe Blattneubildung im September/Oktober
- starker Einfluss der Blattgesundheit
- hohe Borversorgung

Zuckerrüben in der Fruchtfolge

Zuckerertrag

```
5-jähriger Anbau
                    13,8 t/ha = 100 %
4-jähriger Anbau
                    13,1 \text{ t/ha} = 94 \%
3-jähriger Anbau
                    12,2 t/ha = 88 %
2-jähriger Anbau
                     8.8 \text{ t/ha} = 63 \%
```

Erträge fallen in Trockenjahren stärker ab!

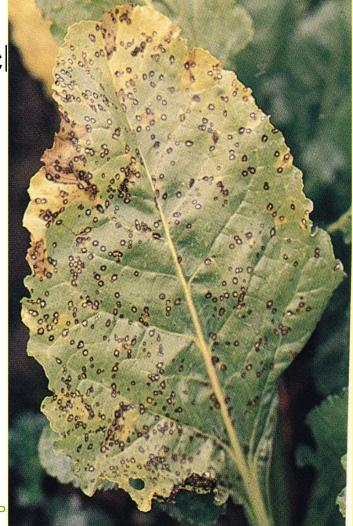
Ursachen für Ertragsrückgang

- Nematoden
- Rhizoctonia (in Mais-, Kartoffelfruchtfolgen)
- Bakterien im Boden
- Bodenverdichtungen durch Rübenernte
- abfallende Nährstoffversorgung (Kalium)

Rhizoctonia-Augenfleck

Rhizoctonia solani – Boniturschema Buddemeyer

Rhizoctonia solani – Zuckerrübenversuch



Blattfleckenkrankheit an Zuc

 Auf älteren Blättern kleine, runde nekrotische Flecken, die scharf abgegrenzt sind

Blattfleckenkrankheit an Zuckerrüben

Bekämpfung

- Resistente Sorten wählen
- Pflanzenrückstände einarbeiten.
- Fungizidbehandlung ABER Achtung: Resistenzentwicklung des Erregers gegenüber bestimmten Fungiziden.

Rübenmotte

Hochschule Weihenstephan-Triesdorf | Prof. Dr. Carl-Philipp Federolf

Bodenbürtige Wurzelkrankheiten

Maßnahme	Rizomania	Rhizoctonia	Gürtelschorf	Macrophomina
Übertragung	Polymyxa betae	Rh. solani	Aphanomyces c.	M. phaseolina
Fruchtfolge	(+)	+++	++	+
Sorte	++++	+++	+	?
Boden- bearbeitung	-	+	++	?
Sanierung	-	-	Kalk	Kalzium, Kali
Kalkstickstoff	-	+	+	++
Fungizidbeizung	?	? [Sedaxane?]	-	? [Sedaxane]
Fungizid- spritzung	-	-	?	-

Vermeidung von Fruchtfolgeschäden in Zuckerrübenfruchtfolgen

- •längere Anbaupausen (4-jährig)
- keine nichtresistenten Kreuzblütler in der Fruchtfolge
- Verunkrautung mit Chenopodiaceaen vermeiden
- Anbau nematodenresistenter Zwischenfrüchte
- Rhizoctonia durch Mais und Kartoffel in der Fruchtfolge
- Sortenwahl:
 - nematodenresistenteSorten
 - rhizoctoniaresistente Sorten

Aussaat

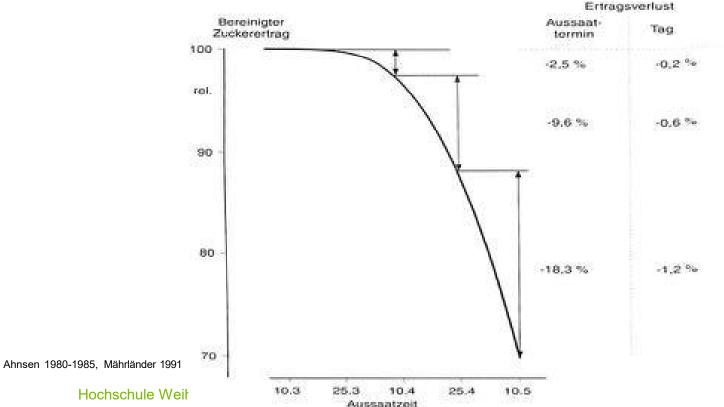

Vorbereitung:

- Vorfrucht i.d.R. Wintergetreide
- Zwischenfrucht:
 - Nematodenresistent?
- Grundbodenbearbeitung i.d.R. im Winter / zur Zwischenfrucht
- Im Frühjahr nur flache Saatbettbereitung:
 - Schnelle Erwärmung und gleichmäßiger Feldaufgang
 - Schonung Bodenwasser
 - Reduzierte Mineralisierung
 - Mulch

Grundvoraussetzungen für die Aussaat

- Boden nicht durch zu viel Bearbeitung austrocknen lassen: Rüben müssen auch ohne Regen nach der Saat auflaufen können
 - Verschlämmungsrisiko begrenzen
 - Kalium schon im Sommer düngen
 - Oberfläche nicht zu fein bearbeiten.
 - organische Rückstände an der Oberfläche belassen
 - Saatbeet rückverfestigen
- ausgefrorene Böden vor der Saat Struktur geben (rückverfestigen)
- Saatgut in den feuchten Boden legen -> Anschluss an Kapillarität sicherstellen
- scharfe Schare und Druckrollen
- langsam drillen

Porenvolumen im Oberboden ausreichend?



Einfluss des Aussaattermins auf den Ertrag und den Reihenschluss

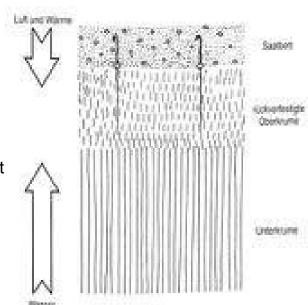
Einfluss des Aussaattermins auf den Ertrag und den Reihenschluss

Jahr	Saatzeit	Reihenschluss	Tage bis Reihenschluss	Zuckerertrag t ha-
2009	12.04.	08.06.	57	14,4
2008	29.04.	19.06.	51	13,1
2008	10.04.	21.06.	72	11,3
2006	04.05.	02.07.	50	10,8

Monat	Anteil der Globalstrahlung eines Monats am Gesamtjahr
Mai	15%
Juni	15%
Juli	15%
August	13%
September	9 %
Oktober	5%

1 Tag früherer Reihenschluss wirkt genau so wie eine 5 Tage spätere Ernte

Keimung


Keimung je nach Genetik zwischen (2 und) 8°C

optimale Keimtemperatur: $20 - 25 \, ^{\circ}\text{C}$

Keimverzögerung ab: 30°C

 Temperatursumme bis Feldaufgang 140° Tage - diese werden erreicht wenn

- Keimwasserbedarf 1,2 1,5 fache Menge des Pillengewichts
- Sauerstoffversorgung
- keine Verschlämmungen vorhanden sind
- Rübensamen darf nicht im Wasser liegen
 - zu Beginn des Quellens des Samens wird der Samen durch die Basalpore mit Luft und Wasser versorgt
 - ist diese mit Wasser gefüllt, droht das Ersticken des Keimlings

Blattbildungsphase

- mit Beginn des Austriebs des ersten Laubblattpaars setzt das Dickenwachstum der Wurzel ein
- die Lichtintensität bestimmt die Geschwindigkeit der Blattbildung
 - höhere Wachstumsrate
 - schnellere Blattbildung
 - zeitiger Reihenschluss
- Temperaturen unter 17 °C begünstigen das Blattwachstum
- das intensive Dickenwachstum der Rübe setzt nach der Ausbildung der ersten 5-6 Blattpaare ein
- bis dahin hat die ca. 1 cm dicke Rübe aber schon 6 Kambium-Ringe angelegt

Kambium-Ringe

Hochschule Weihenstepha

Einfluss der Temperatur auf das Wachstum der Zuckerrübe

- hohe Temperaturen während des Feldaufgangs und der Jugendentwicklung
 - höhere Blattbildungsrate 1 Phylochron = 2 Blätter benötigen 140 160 °
 Tage
 - schneller Reihenschluss 8 10 –Blattstadium 700 800 °C Tage
 - Anlage von mehr Kambium-Ringen
 - höhere Speicherkapazität für Zucker besseres Rüben : Blatt Verhältnis

Einfluss der Temperatur auf das Wachstum der Zuckerrübe

- •hohe Temperaturen während der Hauptwachstums-Phase
 - Anstieg des Ethylen-Pegels
 - schnellere Blattalterung
 - gesteigertes Risiko gegenüber Trockenstress
 - Transpiration zur Kühlung der Blätter
- niedrige Temperaturen (< 16 °C) in der Hauptwachstums-Phase</p>
 - höherer Blattanteil
 - höhere Zuckerkonzentrationen in den Blättern.
 - geringe Sink-Kapazität der Rübe

Einfluss der Temperatur auf das Wachstum der Zuckerrübe

- große Differenz der Tag- und Nachttemperaturen in der Hauptwachstums-Phase
 - höhere Netto-Assimilation
 - in kühlen Nächten ist die Respiration geringer
 - geringerer Energieverbrauch
 - höhere Zuckerkonzentration in der Rübe

Düngung

Stickstoffdüngung

- Stickstoff muss früh zur Verfügung stehen;
 - Nitrat-Mindestkonzentration 75 ppm
- hohe Stickstoffgaben verschlechtern Blatt/Rübe-Verhältnis
- späte Mineralisation verschlechtert die Qualität
- hohe Stickstoffgaben negativ für die Qualität der Rübe
- Stickstoff-Aufnahme aus unterem Krumenbereich.

Stickstoffdüngung

- Stickstoffdünger früh einsetzen
- bevorzugt Ammonium- bzw. Amid-Dünger verwenden
- N-Düngung an der unteren Grenze halten, um nicht zu viel Blatt zu produzieren
- Düngung vor der Saat einarbeiten
- Kopfdüngung nur auf sandigen Böden + Wasser
- eventuell 15 bis 20 kg/ha N über das Blatt applizieren

N- Aufnahme (kg/ha N)	(Pflanzen je m² x 8) + (Ertrag (t/ha) x 1,5)	
+ Rest-N (Wurzelraum)	abhängig von Bodenart und Bodenfeuchte (40 bis 80 kg/ha N)	
N-Bedarf	Abhängig von Blattmasse und Ertragserwartung	
- N _{min} (0 – 60/90 cm)	zu Vegetationsbeginn gemessener Bodenvorrat im Wurzelraum	
- N _{mob}	N-Nachlieferung Boden + Vorfrucht in Abhängigkeit von Bodenstruktur	
- N _{mob} org. Düngung	abhängig von Termin der Ausbringung, im Frühjahr nur NH4	
N - Düngungsbedarf	Für Blattbildung und Ausbildung des Rübenkörpers	
minus NH₄ aus org. Düngung	Ausbringung im Frühjahr vor der Saat	
Mineralische N Düngung	N- Düngung vor der Saat einarbeiten Amid-Dünger	

Faktor	Zu- und Abschläge
Basisertrag (650 dt/ha)	170 kg N/ha
Ertragsdifferenz (850 dt/ha) +100 dt/ha → +10 kg N/ha -100 dt/ha → -15 kg N/ha	+20 kg N/ha
N _{min} -Vorrat im Frühjahr (Bodenprobe/Durchschnittswerte)	-40 kg N/ha
N-Nachlieferung aus org. Düngung im Vorjahr (10 % von Gesamt-N) (60 kg N/ha aus Gärrest)	-6 kg N/ha
Humusgehalt (<4,0 %) (2,9 % Humus)	0 kg N/ha
Vorfruchtwert (Getreide)	0 kg N/ha
Zwischenfrucht (Leguminose, abgefroren)	-10 kg N/ha
N-Düngebedarf	134 kg N/ha Quelle: Nordzucker

Nährstoffbedarf der Zuckerrübe P und K

Rübe – Rübenkörper P_2O_5 1,0 kg/t Ertrag K₂O 2,5 kg/t Ertrag

Blatt - Blattmasse

P₂O₅ 0,8 kg/t Ertrag K₂O 5,0 kg/t Ertrag

300 ka

Rübe–Blatt – Verhältnis: **0,7**

Beispiel 85 t/ha Ertrag → 60 t/ha Blattmasse Blatt – 60 t/ha Rübe – 85 t/ha 85 kg P_2O_5 48 kg

210 kg

Herz- und Trockenfäule durch Bormangel

Borversorgung

- auf den meisten Rübenstandorten wird die Borverfügbarkeit stark eingeschränkt durch:
 - temporäre Trockenheit
 - hoher pH-Wert
- über den Boden appliziertes Bor wird festgelegt
 - Polyboratbildung
- Bor ist in der Pflanze nicht mobil

Bestandesdichte und Ertragspotential

Ernte	bis 20.08.	bis 15.09.	bis 05.10.	später
500 dt/ha	90.000	70.000	60.000	40.000
600 dt/ha	100.000	90.000	80.000	60.000
800 dt/ha	(130.000)	(120.000)	100.000	80.000
1.000 dt/ha			(120.000)	100.000

Bestandesdichte und Ertragspotential

- höhere Pflanzenzahl bei später Aussaat und/oder Frührodung
- Einzelrübe benötigt ausreichend Standraum:
 - 1 kg Rübe mit 17 cm Durchmesser benötigt 21 cm Abstand
 - 700 g Rübe mit 14 cm Durchmesser benötigt 18 cm Abstand

Blattfläche und Ertrag

BFI	3,5	5,0	7,0
Assimilation pro Tag bei 20 ° C (Ø-Temperatur)			
g/m² Blattfläche	13	10,4	7,8
g/m² Boden	39	52	55
kg/ha Trockensubstanz je Tag	390	520	550
Respirationsrate 16° C (nachts)	16 %	21 %	31 %
Nettoassimilation pro Tag kg/ha TS	328	411	380
Respirationsrate 13° C (nachts)	6 %	11 %	17 %
Nettoassimilation pro Tag kg/ha TS	367	463	456
Respirationsrate 16° C (nachts) und Trockenheit (unter 30% nFK)	86 %	95 %	105 %
Nettoassimilation pro Tag kg/ha TS	+ 35	+ 26	- 27

Verlängerung der Blattlebensdauer

- •9. bis 20. Blatt tragen die Hauptlast der Assimilation
- Blattdüngungmit: P, B, Mn
- Verhinderung von Krankheiten
- Blattneuaustrieb vermeiden

Vermeidung des Blattwechsels

- Neue Blätter werden aus den Reservestoffen (= Zucker) in der Rübe gebildet:
 - 4 neue Blätter kosten 12 g Zucker pro Rübe
 - Zuckergehalt sinkt von 18 % auf 16,8 %
 - α-Amino-Gehalt steigt um 4 mmol
- keine N-Düngung nach der Saat über den Boden (Trockenstandorte)
- N-Düngungsniveau so gering wie möglich halten
- K-Versorgung in der Wurzelzone (10-30 cm) sichern
- Nährstoffgehalte vor Trockenstress anheben: K, B, Mn

Technologische Qualität

Zuckerfabrik - Rübenproben Inhaltsstoffe

Zuckergehalt ZG (% auf Rübe)

 Kaliumgehalt K (mmol/100 g Rübe)

Na(mmol/100 g Rübe) Natriumgehalt

Alpha-Amino-N AmN (mmol/100 g Rübe)

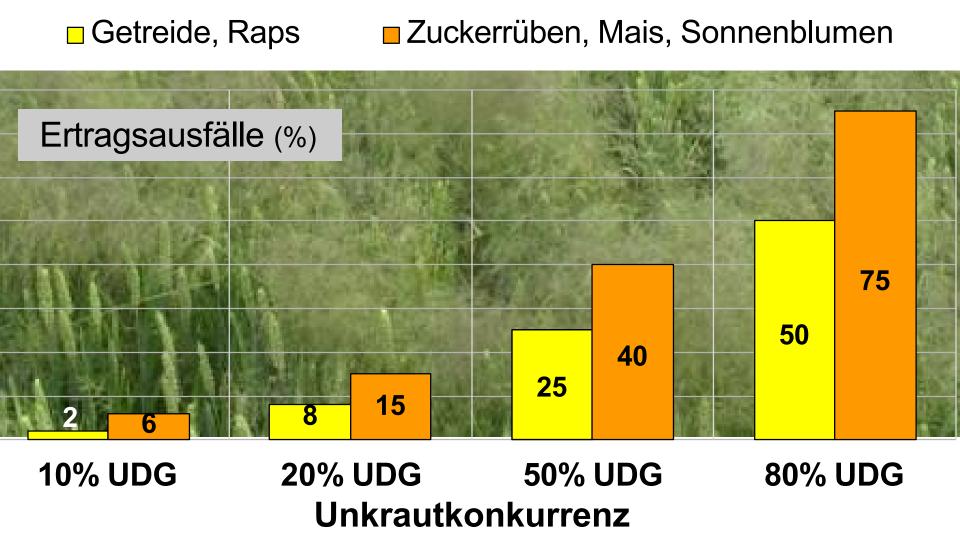
•K, Na und AmN → Melassebildner

Was sagt die Qualitätsanalyse aus?

K mmol / 1000 g Rübe	
über 45	Luxuskonsum
über 40	K ausreichend für Qualität und Ertrag
über 37	Na über 3,5 = keine Ertragsminderung, aber weniger Zucker
	Na unter 3,5 = Ertragseinbußen → α-Amino steigt
unter 35	Ertrag und Zuckergehalt nehmen ab → α-Amino steigt

Was sagt die Qualitätsanalyse aus?

Na mmol / 1000 g Rübe	
Unter 3,5	erhöhte K-Gehalte, falls K verfügbar
4,5 – 5,5	geringe K-Verfügbarkeit, Na besser verfügbar
Über 6,5	Verdacht auf Nematoden (α-Amino niedrig, °S niedrig)
Über 8	Verdacht auf Rhizomania (α-Amino niedrig, °S niedrig) K normal


K: Na = 8-12:1 (optimal)

Was sagt die Qualitätsanalyse aus?

α-Amino - Gehalte	
Unter 10	sehr geringer SMV,gute Ausreife + K ausreichend → hoher Zuckergehalt + Na extrem hoch → Nematoden, Rizomania
10 – 15	Zuckerertrag und -ausbeute optimal
Über 20	geringe Einstrahlung, niedrige Temperaturen K niedrig (unter 35 mmol) Wiederbefeuchtung des Boden Hitzestress Blattkrankheiten Blattneuaustrieb

Warum wird das Ertragspotential nicht genutzt?

- Unzureichende Unkrautbekämpfung
- •Unkräuter konkurrieren mit den Kulturpflanzen um:
 - Stand- und Wurzelraum
 - I icht
 - Wasser
 - Nährstoffe
 - und verstärken die Belastung mit Krankheiten und Schädlingen.
- dazu kommen:
 - Ernteerschwernis und
 - negative Auswirkungen auf die Fruchtfolge

Herbizidstress

Verlust an aktiver Blattmasse

= verminderteAssimilation

erhöhte Respiration

=Atmungsverluste

Stoffwechselstörung

Hemmung der Kohlenhydratund Proteinsynthese

Auswirkung auf den Phytohormonhaushalt

= weniger Kambiumringedurch Wuchsstoffe

Vielen Dank für die Aufmerksamkeit