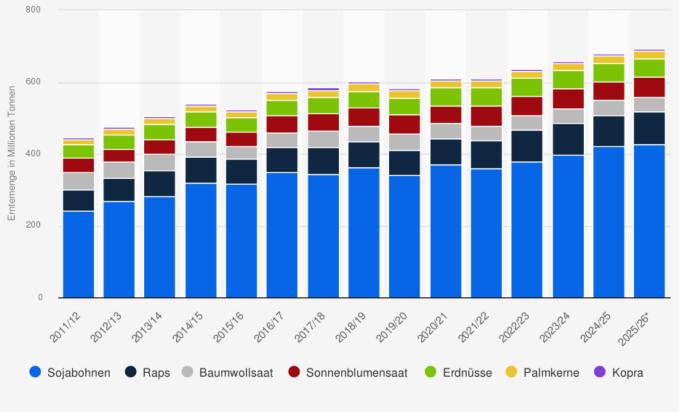

Sojabohne LT3 - Wintersemester 2025/26 Prof. Dr. Carl-Philipp Federolf 13.10.2025

Herkunft der Sojabohne

- Südost-Asien 45 ° Breitengrad
- vor 5000 Jahren in Kultur genommen
- 1737-1739 → Europa Botanische Gärten
- 1840 → Anfänge der Sojakultur in Europa
- 1986-1988 → 964.000 ha Anbaufläche

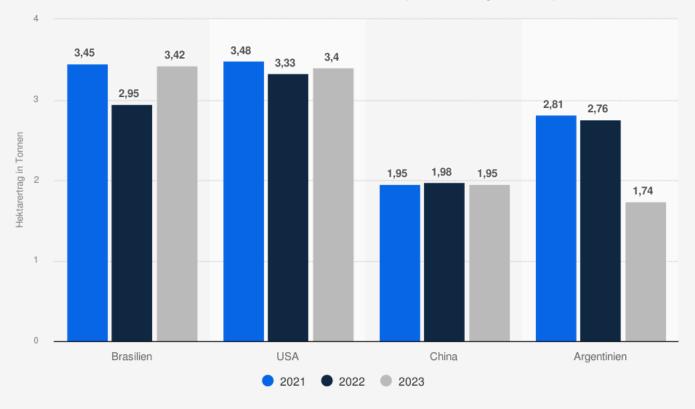
Anbaufläche von Sojabohnen weltweit in den Jahren 2006/07 bis 2025/26 (in Millionen Hektar)


Quelle

USDA Foreign Agricultural Service © Statista 2025 Weitere Informationen:

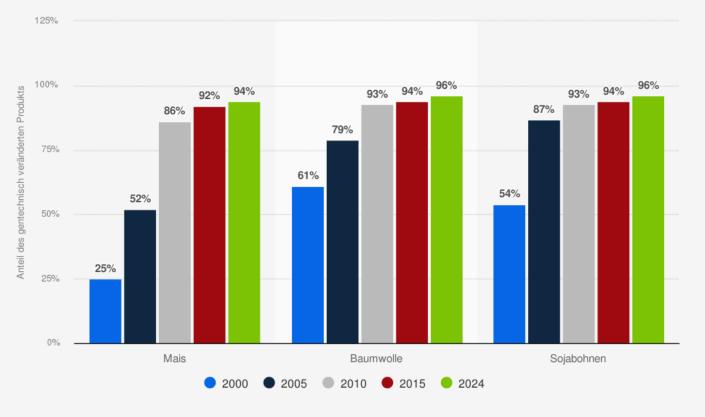
Weltweit

Erntemenge der wichtigsten Ölsaaten weltweit nach Art in den Erntejahren 2011/12 bis 2025/26 (in Millionen Tonnen)



Quelle

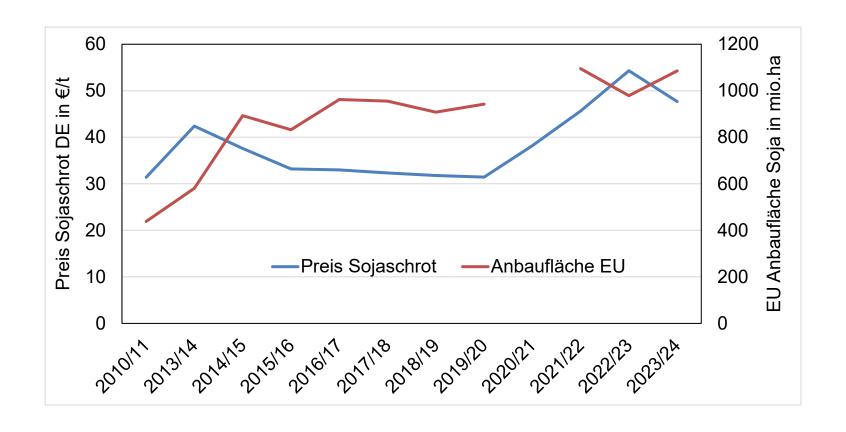
USDA Foreign Agricultural Service © Statista 2025 Weitere Informationen: Weltweit



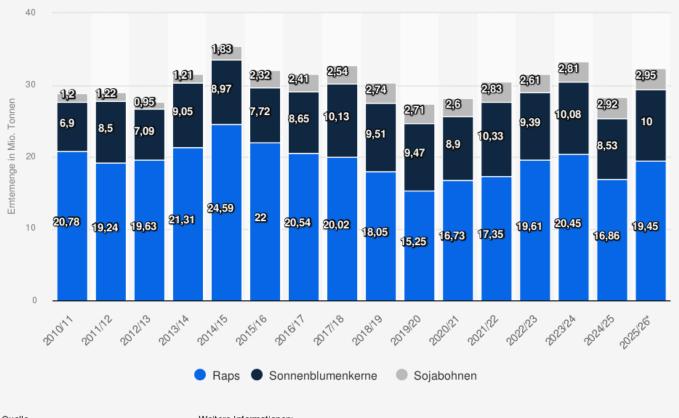
Hektarertrag von Sojabohnen in den führenden Erzeugerländern von Sojabohnen weltweit in den Jahren 2021 bis 2023 (in Tonnen je Hektar)

Quelle FAO © Statista 2025 Weitere Informationen: Weltweit; 2020 bis 2023

Anteil von gentechnisch veränderten Agrarprodukten an der gesamten Anbaufläche in den USA in den Jahren 2000 bis 2024

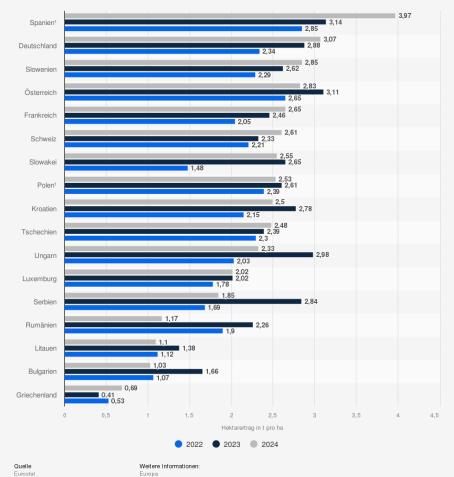

Quellen

USA


Weitere Informationen:

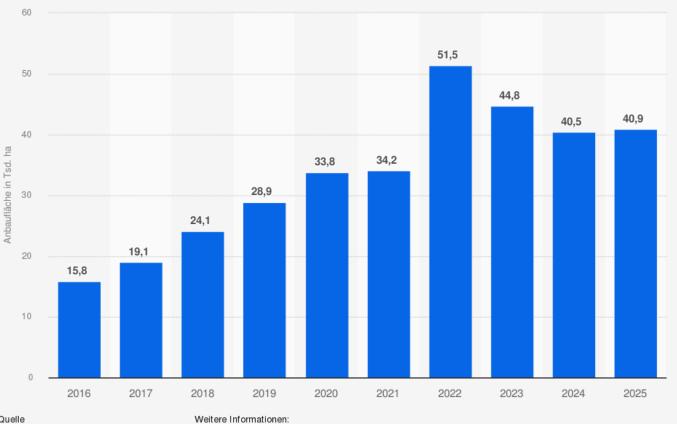
USDA Foreign Agricultural Service; Economic Research Service © Statista 2025

Erntemenge der wichtigsten Ölsaaten in der Europäischen Union in den Jahren 2010/11 bis 2025/26 (in Millionen Tonnen)


Quelle

USDA Foreign Agricultural Service © Statista 2025 Weitere Informationen:

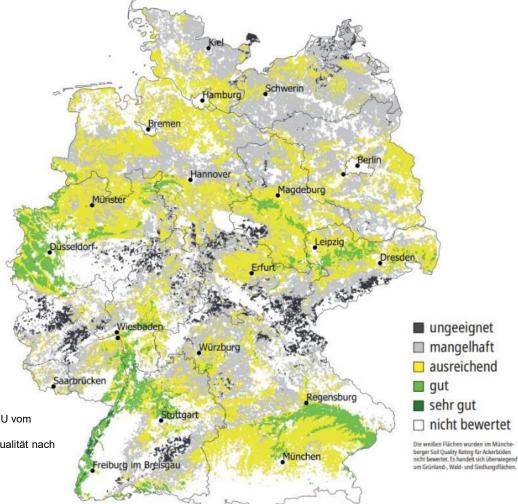
ΕU



Ernteertrag von Sojabohnen in Europa nach ausgewählten Ländern in den Jahren 2022 bis 2024 (in Tonnen pro Hektar)

© Statista 2025

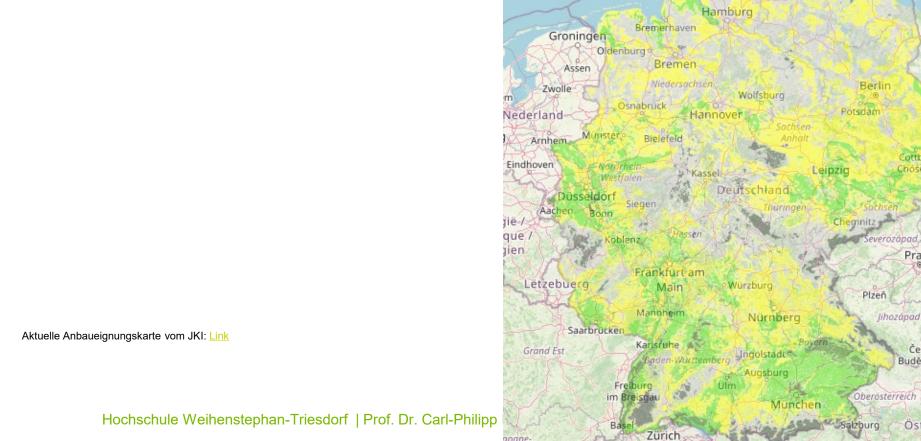
Anbaufläche von Sojabohnen in Deutschland in den Jahren 2016 bis 2025 (in 1.000 Hektar)


Quelle Eurostat

© Statista 2025

Deutschland

Anbaueignung


Anbaueignung Sojabohne berechnet auf der Basis von Temperatursumme nach CHU vom 01.05. – 15.09. der Jahre 2006 – 2020,

Niederschlagssumme vom 01.06. -31.08. der Jahre 2006 -2020 sowie der Bodenqualität nach dem Müncheberger Soil Quality Rating.

Quelle: Stephenson, C., 2022 und eigene Ergänzung von Städtenamen

Hochschule Weihenstephan-Triesdorf | Prof.

Anbaueignung

Flensburg

Lübeck

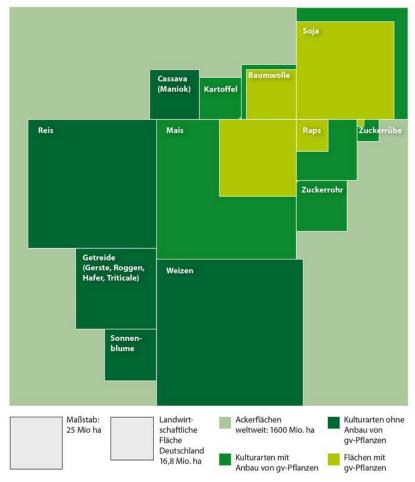
Mecklenburg-

woje zachodn

Gorz

wojewó

Praha


České

Budějovice

Österreic

lubu

Weltweit: Gentechnik

Grafik: Pigurdesign / i-bio

Sojabohne (Glycine max)

- nach Mais weltweit zweitgrößte Ackerkultur
- Inhaltsstoffe:
 - ■16-20 % ÖI
 - ■35-40 % Rohprotein
 - 4-6 % Rohfaser
 - 8-12 % Wasser
 - 22-30 % Stärke
- •hohe Eiweißwertigkeit (Lysin, Methionin)
- hohe Eiweißverdaulichkeit

Verwendungszweck

- Futtermittel
 - Sojaschrot
 - Heu
 - Silage
 - Grünfutter

- Lebensmittel
 - Speiseöl
 - Tofu
 - Sojamilch
 - Mehl
 - Gemüse

Sojabohne

- Wildform Glycine soja
 - stammt aus Amur Ussuri Gebiet
 - stark krautig
 - rankend
 - kleine Körner

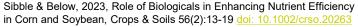
Kulturform – Glycine max

Von Kmusser - Own work using Digital Chart of the World and GTOPO data., CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=6077796

- Blätter
 - beidseitig behaart
 - oval, Rund oder Spitz
 - lang gestielt
 - drei Fiederblättchen
 - erste Laublätter nicht

Blätter

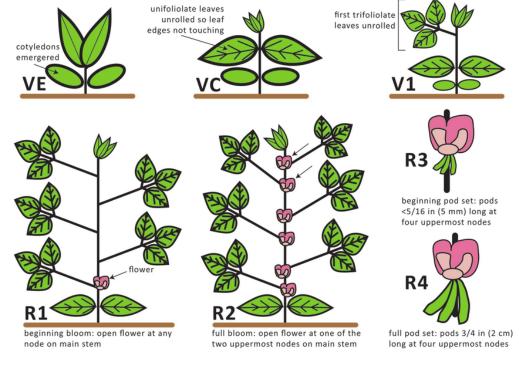
- beidseitig behaart
- oval, Rund oder Spitz
- lang gestielt
- drei Fiederblättchen
- erste Laublätter nicht


Stängel

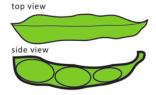
- rund Oval
- 20 100 cm
- leicht behaart

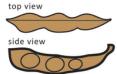
Wurzel

- Pfahlwurzel 60 120 cm
- zahlreiche Nebenwurzel
- Symbiose mit Bakterien



By Anonymous http://hdl.handle.net/1887.1/item:9 38298, CC BY 4.0, https://commons.wikimedia.org/w/index.php?curid=84240546


SOYBEAN GROWTH AND DEVELOPMENT



beginning seed set: R5 beginning seed set: seed is 1/8 in (3 mm) long at one of four uppermost nodes

R6 full seed set: green seed that fills pod capacity at one of four uppermost nodes

beginning maturity: one pod on the main stem has reached mature pod color

full maturity: 95% of pods have 5 R8 full maturity: 95% of pous reached mature pod color

Wurzelleistung

- Wurzel
 - Tiefgehend, stressresistent
 - Sehr günstiges Wurzel-Spross-Verhältnis
- Pfahlwurzel
 - Unempfindlich gegenüber Verdichtungen oder schwer durchwurzelbaren Zonen (vgl. Erbse)
 - Kann Nährstoffe und Wasser aus dem Unterboden nutzen (P, K, S, Mikros) v.a. bei Trockenheit
 - Schnelles Tiefenwachstum → frühe Trockentoleranz
 - Kaum mit Rhizobien Infiziert
 - Unempfindlich gegenüber kurzzeitiger oberflächiger Vernässung (Starkregen)
- Seitenwurzel
 - Aufnahme von diffusionsabhängigen Nährstoffe (P&K)
 - Rhizobien infizieren überwiegend Seitenwurzel
 - hohe Seitenwurzeldichte → viele Rhizobien
 - Werden durch hohen Feinerdeanteil gefördert
 - Hohe Temperaturen

Soja Blatttypen

Einfluss des Blatttyps auf die Spätverunkrautung

Blüten

- Iila und/oder weiß
- Selbstbefruchter
- 5-7 mm groß, 5 bis 20Stück/Nodium
- Blüten in Blattachseln oder endständig

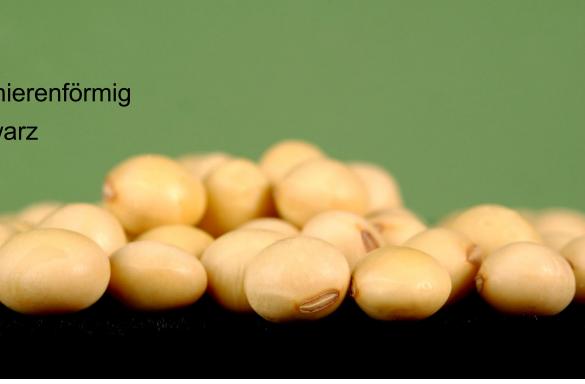
Blüten

- Iila und/oder weiß
- Selbstbefruchter
- 5-7 mm groß, 5 bis 20Stück/Nodium
- Blüten in Blattachsen oder endständig

Hülsen

- leicht gebogen
- ■20-70 mm lang
- Behaart
- 2 bis 4 Körner/Hülse

Von Ayotte, Gilles, 1948- - Bibliothek der Université Laval, CC BY-SA 4.0, https://commons.wikimedia.org/w/index.php?curid=127859312


Körner

rund, oval, platt oder nierenförmig

Nabelfarbe weiß/schwarz

■ 100 – 240 g TKG

Von CSIRO, CC BY 3.0, https://commons.wikimedia.org/w/index.php?curid=35476410

Von Tris T7 - Eigenes Werk, CC BY 3.0, https://commons.wikimedia.org/w/index.php?curid=75502389

Soja – "Wuchstypen"

Soja – "Wuchstypen"

- Determiniert begrenzt wachsend
 - Wachsen nach der Blüte Vegetativ nicht mehr weiter
 - Anbau im Süden (unter 40° Breitengrad)
- Semi-Determiniert Halb-begrenzt wachsend
 - wenig verzweigend
 - gute Standfestigkeit
 - kürzere Wuchshöhe
 - geringere Nodienanzahl
- Indeterminiert Unbegrenzt wachsend
 - Wachsen nach der Blüte Vegetativ weiter
 - gute Kompensationsfähigkeit bei Stress (Kälte, Blütenabwurf)
 - durch → höherer Nodienanzahl
 - oder → mehr Verzweigungen

Indeterminierte Wuchstypen

- •Diese Sorten setzen keine feste Begrenzung für Blüte und Hülsenbildung:
 - Vorteilhaft in trockeneren Regionen
 - Nach Phasen mit Hitze- oder Trockenstress können sie bei erneuter guter
 - Witterung weiterwachsen und neue Blüten und Hülsen bilden
 - Das steigert Ertragssicherheit, kann jedoch die
 - Abreife verzögern


Semi-determinierte Wuchstypen

- Diese Sorten beenden Blüte und Hülsenbildung, sobald:
 - der sortenspezifische Wärme- und Wasserbedarf gedeckt ist oder
 - anhaltende Trockenheit das Wachstum stoppt
 - Ein Neustart der Blüte nach einem Wachstumsstillstand erfolgt nicht. → Geeignet für feuchte oder gleichmäßig versorgte Standorte

Züchtung / Zuchtziele

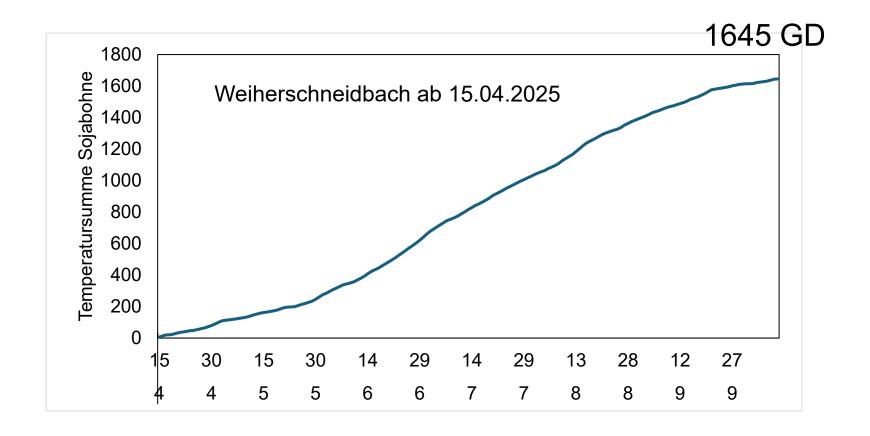
- Agronomie
 - Ertragssteigerung und stabilität
 - Lagerung / Standfestigkeit
 - Resistenz:
 - Biotisch/Krankheiten
 - Sklerotinia
 - Virosen
 - Abiotisch/Umwelt
 - Trockenheit
 - Blütenabwurf bei Kälte
 - Wuchstyp, Blattform

- Verbesserte Qualitätseigenschaften
 - Protein Fokus in Europa
 - High Protein
 - Öl
 - High Oil
 - Reduktion Lipoxygenase
 - Reduktion Linolensäure
 - Kohlenhydrate
 - High Sugar
 - Antinutritive Stoffe
 - Trypsininhibitoren reduziert

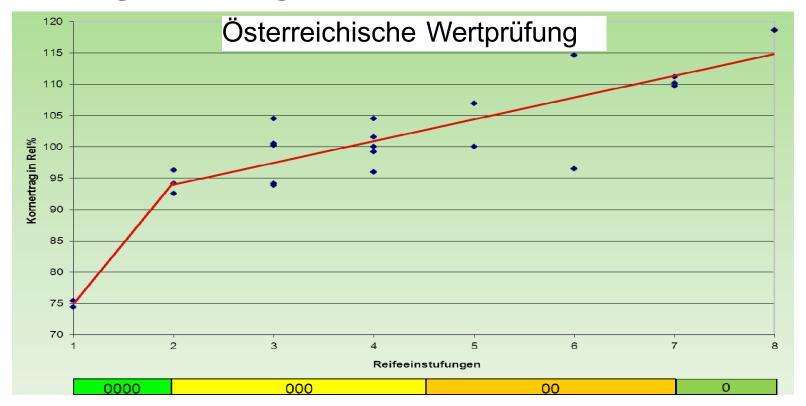
Reifegruppe

- Temperatur-und Tageslängenanspruch entscheidet über die Reifegruppe der Sorte.
- Temperatursumme: 1450°C bis 2500 °C erreichen der Reife
- Tageslänge: Kurztag, Tagneutral, Langtagcharakter
 - Einfluss auf länge des Vegetativen Wachstums und auf Übergang der Reproduktiven Phase!
- International 13 Reifegruppen
 - 000 → sehr früh
 - X → Tropisch
- Deutschland
 - Anbau von 0000/000 bis 00/0 Sorten

Temperatursumme

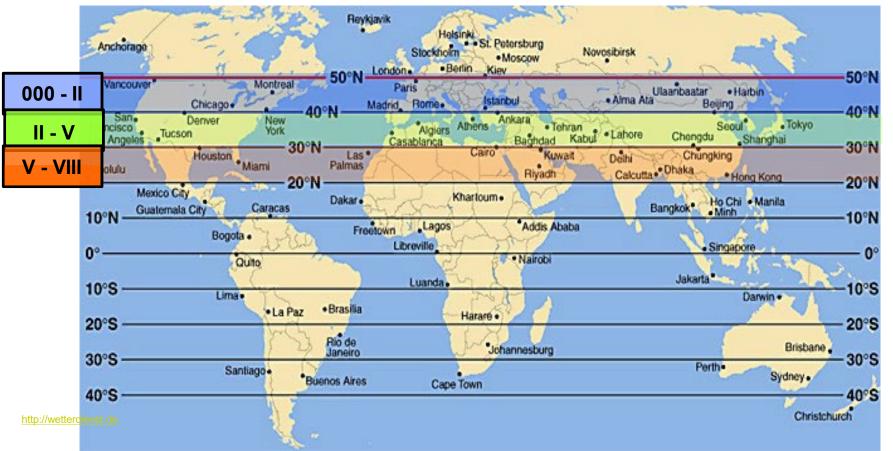

Basis Soja: 6 °C

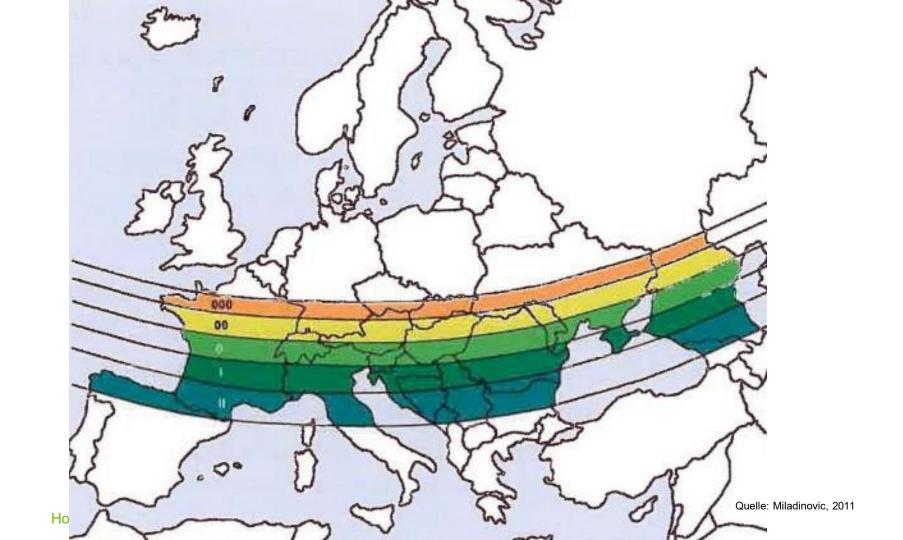
•Berechnung:
$$T_{\Sigma} = \sum_{Aussaat}^{Ernte} \left(\frac{(T_{min} + T_{max})}{2} - T_{basis} \right)$$


$$T_{max} > 30 \text{ ist } T_{max} = 30$$

$$T_{\Sigma} < 0$$
 ist $T_{\Sigma} = 0$

McMaster GS, WilhelmWW (1997) Growing degree-days: one equation, two interpretations. Agric For Meteorol 87:291-300. doi:10.1016/S0168-1923(97)00027-0



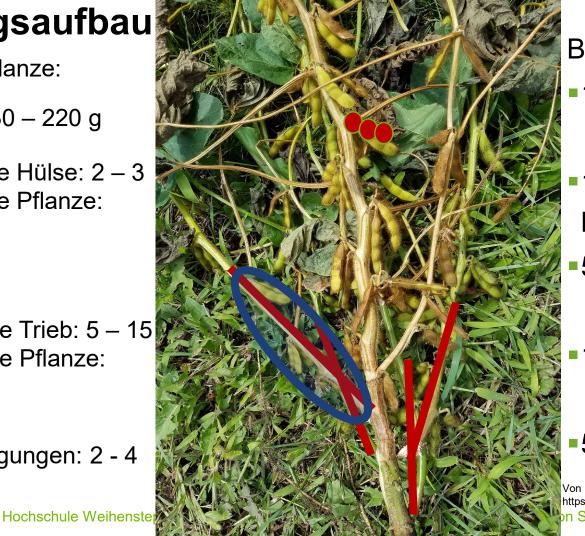

Ertrag X Reifegruppe

Quelle: Saatbau Linz 2015

Soja Reifegruppen nach Breitengrad

Ertragsaufbau

Ertragsaufbau


Einzelpflanze:

TKG: 130 – 220 g

Körner je Hülse: 2 – 3 Körner je Pflanze: 20 - 90

Hülsen je Trieb: 5 – 15 Hülsen je Pflanze: 10 - 30

Verzweigungen: 2 - 4

Bestand:

■1,8 – 6 t/ha Ertrag

■1000 − 5000 Körner/m²

■500 – 1500 Hülsen/m²

■100 – 240 Triebe/m²

■50 – 60 Pflanzen/m²

Von Derekjpotratz - Eigenes Werk, CC BY-SA 4.0, https://commons.wikimedia.org/w/index.php?curid=74997544 on Systems | 42

Welche Erträge sind in Deutschland möglich?

- Soja ist eine Kurztagspflanze:
 - der Feldaufgang muss unter Kurztagsbedingungen erfolgen

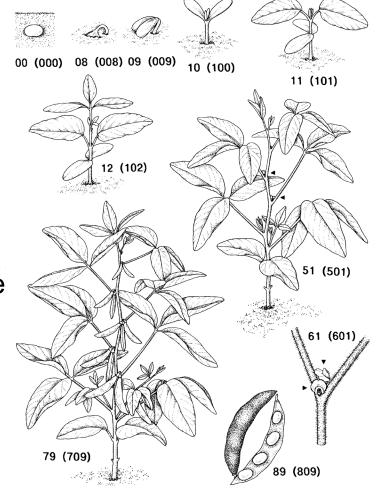
Gebiet	°nB	Ertrag dt/ha
bis Mailand	46	40 – 50
bis Passau	48	35 – 45
bis Würzburg	50	30 – 35
bis Leipzig	51	20 - 25

Aussaatdatum

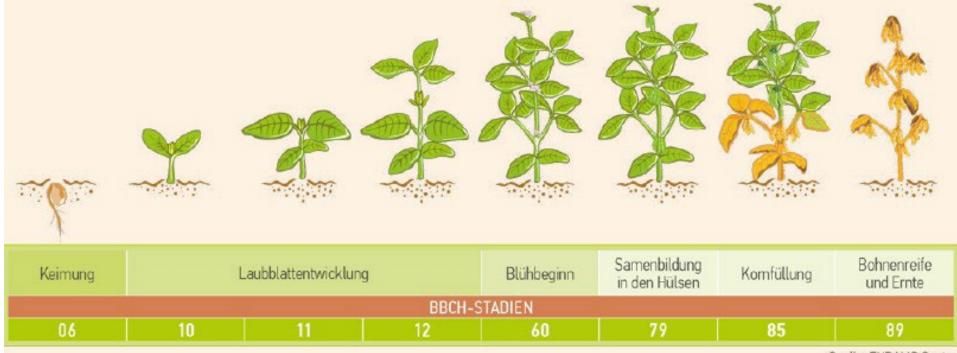
Entwicklungsstadien

Europäisches System Amerikanisches System

BBCH - Skala


Munger et al., 1997

Soybean
growth stages
Fehr and Caviness (1997)


BBCH Skala

Makro- und Mikrostadien

- 00 09 → Keimung
- 10 19 → Blattentwicklung
- 20 29 → Seitensprossenentwicklung
- 49 → Erntefähige vegetative Pflanzenteile haben endgültige Größe erreicht
- 50 59 → Blütenanlage
- 60 69 → Blüte
- 70 79 → Samenentwicklung
- 80 89 → Samenreife
- 90 99 → Absterben

Fehr and Caviness (1997)	Plant Development
VE	Emergence
VC	Cotyledon + unfolding unifoliate leaves
V1	First node trifoliate leaves
V2	Second node
V3	Third node
V4	Fourth node
V5	Fifth node
V6	Sixth node
V(n)	Nth node
R1	Beginning bloom
R2	Full bloom
R3	Beginning pod development
R4	Full pod
R5	Beginning seed
R6	Full seed
R7	Beginning maturity
R8	Full maturity leading to harvest

Quelle: EURALIS Saaten

VE	VC	V1	V2	K1	K4-K6	K8
Abbildung 1: \	Vergleich des europäi	schen und amerika	nischen Systems o	der Einteilung der Entv	vicklungsstadien von Soia (Eur	alis Saaten, Taifun)

Entwicklungsstadien amerikanische Literatur

Quelle: Taifun Sojainfo, Ausgabe 51

Klimaansprüche

- Temperatursumme 1600 °-Tage über 10°C
- ■Bodentemperaturen ≥ 10°C im April
- •400°C Temperatursumme im Mai (Tagesmittel ≥ 13°C)
- keine Spätfröste (unter 4°C)
- •000-Sorten bis 50. Breitengrad
- Höhenlagen bis 400 m

Anbaueignung

Aktuelle Anbaueignungskarte vom JKI: Link

Spezifischer Wasserbedarf in der Hauptvegetation

Wasserbedarf ab Mitte Juni bis September:

Bedarf für 4 t/ha:	180 l/m²
3 t/ha:	140 l/m²
2 t/ha:	110 l/m²

Trockensensible Phasen

Blühbeginn: Hülsenansatz

Hülsenansatz: Erhöhung der Kornzahl/Hülse

Dickenwachstum der Hülsen: Erhöhung des TKG

→ Größter Wasserbedarf Mitte / Ende Juli!

Standortansprüche

- Geeignet:
 - alle Böden, die sich schnell erwärmen
 - Böden mit guter Wasserführung
- •Ungeeignet:
 - kalte Standorte
 - staunasse Böden
 - steinige Böden → Ernteerschwernis
 - Ackerwinden-Standorte

Fruchtfolge, Vorfruchtwirkung

- Fruchtfolge:
 - Nachbau Soja Soja beim ersten Mal möglich Etablierung der Knöllchenbakterien im Boden
 - FF-Krankheiten: Rhizoctonia, Sklerotinia
- Vorfruchtwert:
 - qute Durchwurzelung
 - Transport von N in tiefere Schichten
 - N-Leistung: 170 bis 200 kg/ha ca. 50 kg für Folgefrucht anrechenbar
 - Bewertung des Vorfruchtwertes:
 - Raps > Kartoffel > Zuckerrübe > Soja >> Mais

Wichtigsten Schädlinge und Krankheiten

Schädlinge	Krankheiten
 Distelfalter Bohnenfliege Mäuse, Vögel Wildschaden Blattläuse Thripse Blattrandkäfer 	 Rhizoctonia, Sklerotinia (FF-Krankheiten) Phomopsis/Diaporte Peronospora Bakterienbrand Sojarost in Europa (noch) nicht

Distelfalter (Vanessa cardui)

Distelfalter (Vanessa cardui)

- 1. Generation ab Ende Mai Anfang Juni
- Warme Bedingungen begünstigen den Befall
- Larven der 1. Generation kommen nesterweise im Schlag vor
- Bekämpfung der Larve mit einfachen Pyrethroiden möglich

Bohnenfliege (Delia platura)

- Schaden solange die Soja im Boden ist
- Sobald die Pflanze Aufläuft → Verpuppen sich die Larven

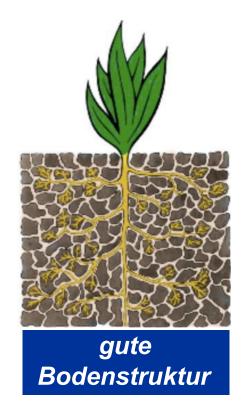
- •nicht zu tief Ablegen (max. 4 cm)
- zügiges Auflaufen sichern

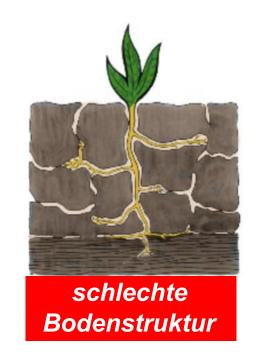
Sklerotinia

Falscher Mehltau (Peronospora manshurica)

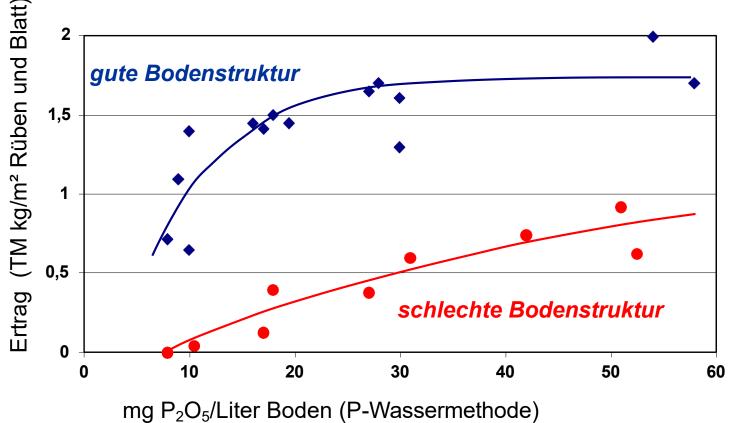
Hochschule Weihenstephan-Triesdorf | Prof. Dr. Carl-Philipp Federolf | Crop Production Systems

Bakterienbrand (Pseudomonas syringae pv. glycinea)


Hochschule Weihenstephan-Triesdorf | Prof. Dr. Carl-Philipp Federolf | Crop Pro


Bodenbearbeitung

Reaktion der Sojabohne auf:	
tiefe Lockerung (auch in Streifen)	++
hoher Feinerdeanteil Krume	+++
intensive flächige Lockerung	+
Bodenverdichtungen Oberboden	
Bodenverdichtungen Unterboden	0
vernässte Bodenstruktur	


Ernterückstände:		
In der Reihe (Einzelkornsaat)		
zwischen den Reihen	0	
"Strohpakete" unter der Reihe		
Verkrustung (Luftmangel)		

Bodenstruktur und Nährstoffverfügbarkeit

Bodenstruktur und Nährstoffverfügbarkeit

Saatbettvorbereitung

- Stroh gleichmäßig einarbeiten
- Verdichtungen beseitigen
- Rückverfestigen (Feinerde)
- vor Winter unbedingt einebnen
- März/April flache Bearbeitung
- nach Aussaat anwalzen

- Saatzeit:
 - Anfang April bis Anfang Mai (Bodentemperatur ≥ 8°C)
 - feucht-kühle Witterung nach Saat: Auflaufschäden, Verunkrautung!
- Saatstärke:
 - Keimfähigkeit und Triebkraft überprüfen!
 - Ziel: 30 bis 60 Pflanzen/m²
 - 0-Sorten: :~ 30 keimfähige Pfl./m²
 - 00-Sorten: ~ 45 keimfähige Pfl./m²
 - 000-Sorten: ~ 60 keimfähige Pfl./m²
 - Reihenabstand bei Drillsaat
 - 15 bis 25 cm (6 bis 10 cm in der Reihe)

Soja ist eine KT-Pflanze → kürzere Tageslänge beim Feldaufgang ist Vorteil je später eine Sorte ist (→ wie Mais)

- Vorteil frühe Saat:
- längere Anlagephase: höhere Hülsenzahl
- früherer Blühbeginn: höheres TKG
- bessere Verzweigung (0/00-Sorten): höhere Hülsenzahl

- Soja ist eine KT-Pflanze → kürzere Tageslänge beim Feldaufgang ist Vorteil je später eine Sorte ist (→ wie Mais)
- Risiken frühe Saat:
- lange Auflaufphase bei Kälteeinbruch (s. 2017/19): FA-Verluste
 - Krankheitsbefall der Keimblätter → Verluste
 - Herbizidstreß durch Kälte, Einwaschung (Pendimethalin, Metribuzin, ALS-Hemmer)
- tieferer Erstansatz der unteren Hülsen nach langer, kühler (nasser) FA-Phase
- Geringere Knöllcheninfektion nach langer, feucht-kühler FA-Phase

- Saattiefe:
 - 2 bis 4 cm je nach Boden
 - 2 cm bei schweren, kalten Böden
 - 4 cm bei leichten, warmen Böden
 - Bodenschluss
- Saattechnik:
 - Einzelkornsaat der Drillsaat überlegen!
 - exakte Tiefenablage
 - optimale Reihenweite: 37,5 cm

EKS oder Drillsaat?

- + Vorteile der Einzelkornsaat
 - sicheres Keimen (Ablage auf wasserführender Schicht)
 - gleichmäßiger Auflauf (gleichmäßige Ablagetiefe)
 - bessere Einstrahlung (breite Reihenweite), deshalb auch in Nord-Süd-Richtung drillen
 - Hacken in weiten Reihen möglich
 - tendenziell höherer Ansatz der untersten Hülsen (+ 1 bis 3 cm)
- Nachteile der Finzelkornsaat
 - später Bestandesschluss
 - Risiko Spätverunkrautung
 - gute Saatgutqualität wegen reduzierter Aussaatstärke notwendig 35-45 Kö/m2 (gute Triebkraft, unbeschädigtes Saatgut)

Düngerbedarf

Vielen Dank für die Aufmerksamkeit