Bodenkultur und Düngung

Pedogenese: Bodenbildende Faktoren und Prozesse

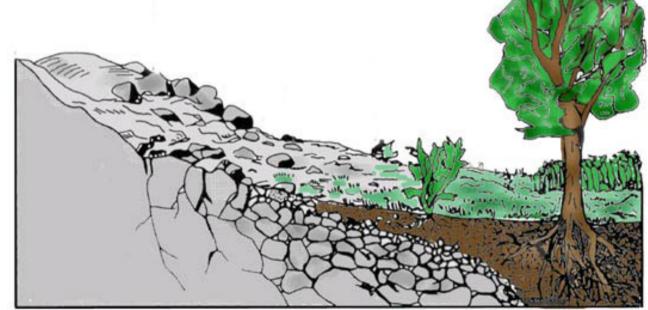
Prof. Dr. Mareike Ließ

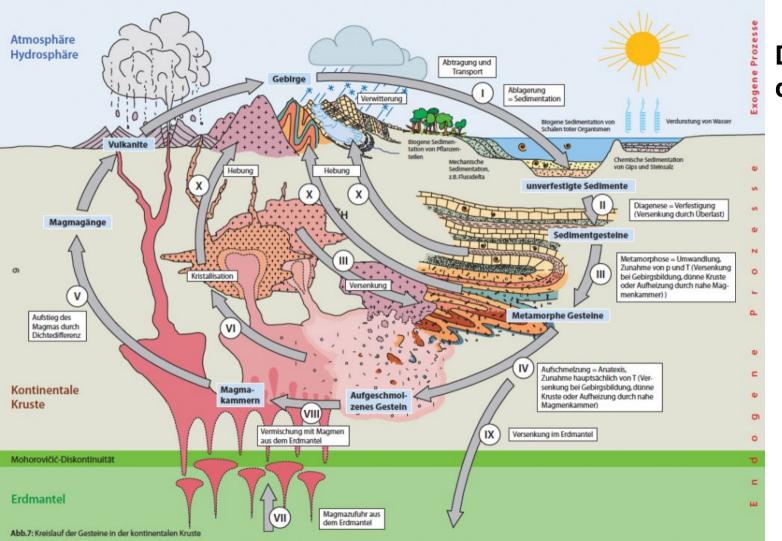
WS 25/26

Wiederholung

- Im Boden laufen zahlreiche physikalische, chemische und biologische Prozesse ab. Die Landwirtschaft greift in diese Prozesse ein und verändert die Bodeneigenschaften
- Die Korngrößenzusammensetzung ist eine wichtige Bodeneigenschaft. Sie ist ein Indikator für viele weitere Bodeneigenschaften
- Böden sind sehr vielfältig
- Bodentypen haben eine charakteristische Horizontabfolge. Die Bezeichnungen dienen der Verständigung
- Es gibt Labor- und Feldmethoden zur Bestimmung von Bodeneigenschaften
- Begrifflichkeiten: Bodenart, Bodentyp, Bodenhorizont

Bodentypen: Charakteristische Abfolge von Bodenhorizonten

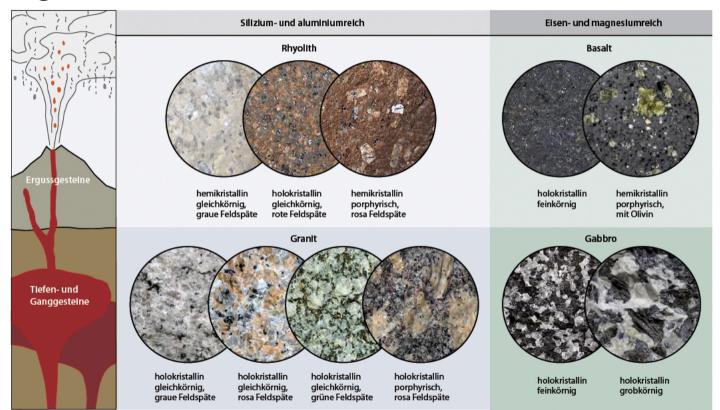

Zech et al., 2014. Böden Der Welt. Springer, Berlin. ISBN 978-3-642-36575-1


Pedogenese

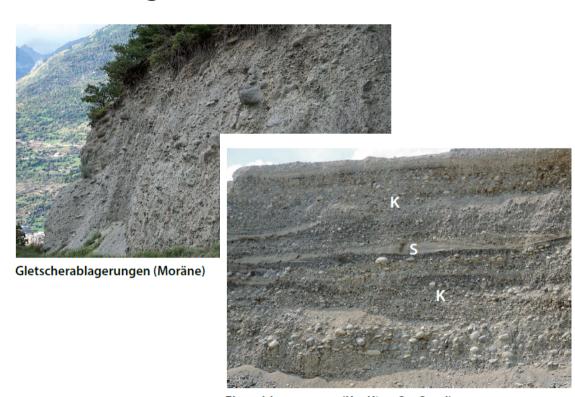
Die Pedogenese oder Bodenbildung beschreibt den Prozess der Entstehung von Böden als ausdifferenzierte Sphäre, die auf fest- oder Lockergestein aufliegt und sich

maßgeblich aus diesem entwickelt hat.

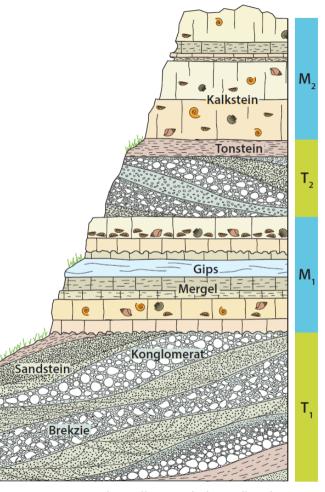
Durch die Prozesse der Bodenbildung entwickeln sich spezifische Abfolgen von Bodenhorizonten.



Der Kreislauf der Gesteine

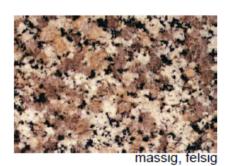

https://www.csialps.unibe.ch

Magmatische Gesteine



https://www.csi-alps.unibe.ch

Sedimentgesteine


Flussablagerungen (K = Kies; S = Sand)

https://www.csi-alps.unibe.ch

Metamorphe Gesteine

Metamorphe Gesteine werden vor allem durch ihr Gefüge charakterisiert, welches durch die Beanspruchung des Gesteins durch Druck und Temperatur entsteht

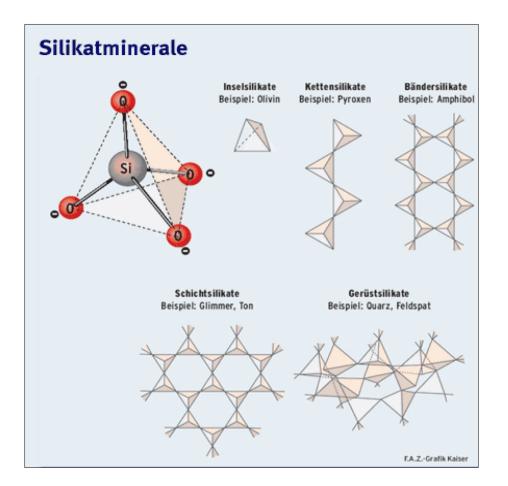
phyllitisc

www.geo-life.ch

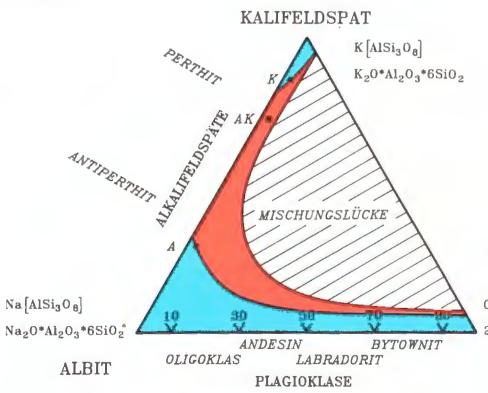
Mittlerer Chemismus, Mineral- und Gesteinsbestand der Erdkruste

Chemis Oxide	mus Masse	-% ^{a)}	Elem	ente Masse-%	Vol%	Mineralbestand	Vol-%	Gesteinsbestand ^{b)}	Vol%
SiO ₂	57,6	52,5	0	47,0	88,2	Plagioklase	39	Basalte, Gabbros	
Al ₂ O ₃	15,3	10,5	Si	26,9	0,32	Quarz	12	u.a. basische Magmatite	42,6
Fe ₂ O ₃	2,5	4,0	Al	8,1	0,55	K-Feldspäte	12	Gneise	21,4
FeO	4,3	4,0	Fe ³⁺	1,8	0,32	Pyroxene	11	Granodiorite, Diorite	
MgO	3,9	3,3	Fe ²⁺	3,3	1,08	Glimmer	5	und Syenite	11,6
CaO	7,0	11,1	Ca	5,0	3,42	Amphibole	5	Granite	10,4
Na ₂ O	2,9	2,8	Mg	2,3	0,60	Tonminerale	4,6	kristalline Schiefer	5,1
K ₂ O	2,3	4,6	Na	2,1	1,55	Olivine	3	Tone, Tonschiefer	4,2
TiO ₂	0,8	-	K	1,9	3,49	Calcit, Dolomit	2,0	Carbonatgesteine	2,0
CO ₂	1,4	-				Magnetit	1,5	Sande,Sandsteine	1,7
H ₂ O	1,4	-				andere Minerale	4,9	Marmor	0,9
MnO	0,16	-							
P_2O_5	0,22	-							

- Verbindungen aus O und Si (Salze der Kieselsäure und das reine Oxid SiO2) herrschen vor
- große Bedeutung der Silikate als Primär- und Sekundärminerale


a) Die 2. Spalte gibt die mittlere Zusammensetzung oberflächennaher Gesteine an (HUDSON, 1995).

b) Die Vormacht basischer Gesteine beruht auf der flächenmäßigen Vormacht der ozeanischen Kruste.


Silikate

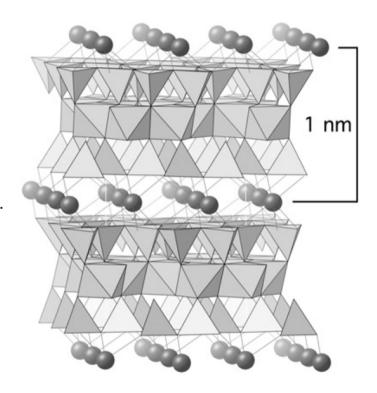
Primäre (lithogene) Silikate

- Inselsilikate
- Kettensilikate
- Bändersilikate
- Schichtsilikate
- Gerüstsilikate

Silikate: Feldspäte

- Gerüstsilikate
- 60-65 Vol% der Erdkruste
- Gruppe mit drei Endgliedern:
 Kalifeldspat, Albit, Anorthit
- **isomorpher Ersatz:** in den Tetraedern ist ein Teil der Si-Zentren durch Al³⁺ besetzt. Zum Ladungsausgleich sind die relativ großen K⁺-, Na⁺- oder Ca²⁺-Ionen in die Lücken der Silikatstruktur eingebaut

Ca[Al₂Si₂O₈]
2CaO*2Al₂O₃*4SiO₂
ANORTHIT


Silikate: Glimmer

- Schicht-, Blatt-, Phyllosilikate
- K-Mg-Fe-Al-Silikate
- Aufbau aus Tetraeder- und Oktaederschichten
- SiO₄-Tetraeder in der Fläche miteinander vernetzt. Das vierte, nicht mit Nachbar-Tetraedern vernetzte O²⁻-lon verknüpft die Tetraederschicht mit der Oktaederschicht, in der Al³⁺-, Mg²⁺- oder Fe²⁺- lonen sechsfach koordiniert sind.
- Die häufigsten Glimmer sind der helle Muskovit und der dunkel gefärbte Biotit.

https://nat.museum-digital.de

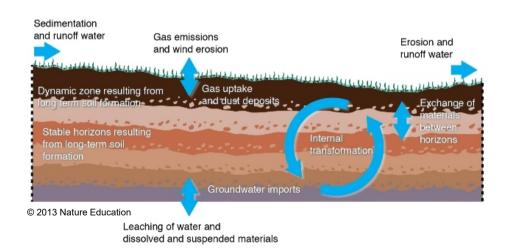
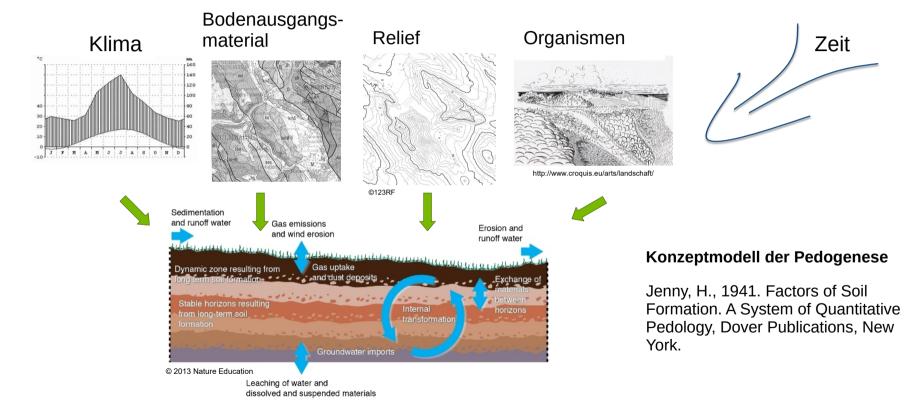


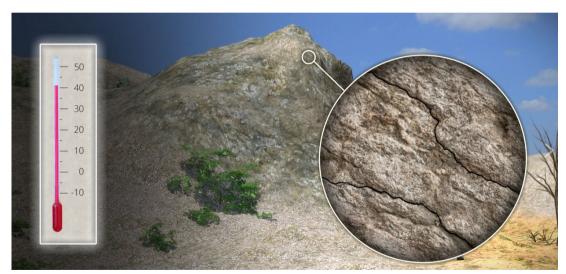
Abb. 2.2–4 Modell einer Glimmerstruktur. Die Kugeln sind K^+ -Ionen. Die Dicke einer Elementarschicht ist gekennzeichnet.


Pedogenese

Minerale in magmatischen und metamorphen Gesteinen entstanden unter völlig anderen physikochemischen Bedingungen als denen der Pedosphäre, dem unmittelbaren Kontakt zwischen Lithosphäre, Atmosphäre, Hydrosphäre und Biosphäre.

- In einem Boden laufen daher ständig Stoffumwandlungen und Stoffverlagerungen ab
- Diese beruhen auf zahlreichen zusammenwirkenden chemischen, physikalischen und biologischen Prozessen.

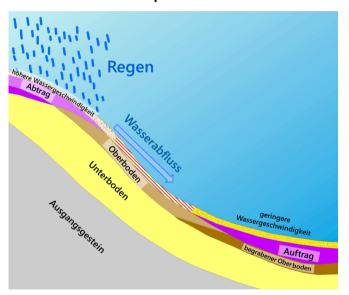
Die 5 bodenbildenden Faktoren

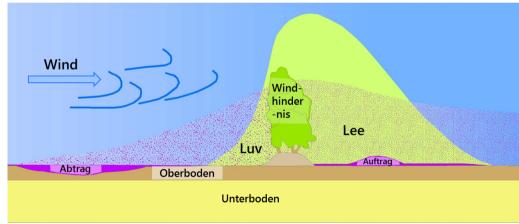


Bodenbildende Prozesse

- physikalische Verwitterung und physikalische Prozesse
- chemische Verwitterung und chemische Prozesse
- biologische Verwitterung und biologische Prozesse

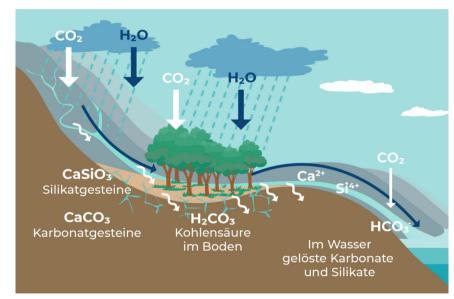
Physikalische Verwitterung und physikalische Prozesse


- Temperaturschwankungen
- Frostsprengung


https://lightframefx.de/verwitterung-die-zersetzung-von-gesteinen/

Physikalische Verwitterung und physikalische Prozesse

Erosion/ Transport durch Wasser



Erosion/ Transport durch Wind

https://www.schleswig-holstein.de/DE/fachinhalte/B/boden/bodenerosion

Unter chemischer Verwitterung fasst man diejenigen zwischen Lösung und Festkörper ablaufenden chemischen Reaktionen zusammen, durch die Minerale in ihrem Chemismus verändert oder vollständig gelöst werden.

https://lernreise.klimacampus.org/

- Die Wirkung nimmt mit abnehmender Korngröße der Minerale zu.
- Das wichtigste Agens der chemischen Verwitterung ist neben dem Sauerstoff das Wasser, das die Minerale löst oder hydrolytisch spaltet.
- Die Wirkung des Wassers wird durch anorganische (H₂CO₃) und organische Säuren sowie durch steigende Temperatur verstärkt.

Hydrolyse

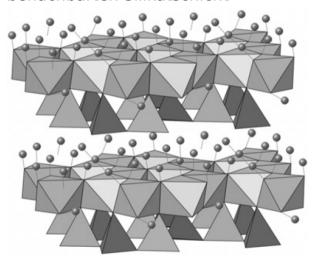
- die Bestandteile der Minerale reagieren chemisch mit den H⁺- und OH⁻-Ionen des dissoziierten Wassers. Hydrolytisch zersetzt werden vor allem Verbindungen, die aus einer schwachen Säure und/oder schwachen Base bestehen, also z. B. Carbonate und Silicate. Damit ist der größte Teil der gesteinsbildenden Minerale betroffen.
- In Böden des humiden Klimaraums ist die Reaktion mit den H⁺-lonen der Lösung die eigentliche Triebkraft dieser Verwitterungsart. Hierbei werden Sauerstoff-Brückenbindungen zwischen Metallen M (Fe, Al, Ca, Mg, K, Na u. a.) und Si (Silicate), C (Carbonate) oder P (Phosphate) gesprengt, die Si–O–M, C–O–M und P–O–M–Gruppen zu –Si–OH (Silanol), –C–OH (Hydrogencarbonat) bzw. –P–OH (Hydrogenphosphat) protoniert und die Metalle freigesetzt:

$$-Si-O-M + H^+ = -Si-OH + M^+$$

 $-C-O-M + H^+ = -C-OH- + M^{++}$
 $-P-O-M + H^+ = -P-OH- + M^{++}$

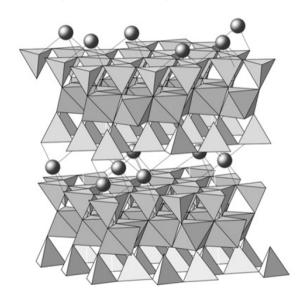
Mineralneubildung: Tonminerale

- aus den Verwitterungsprodukten primärer Silikate gebildet
- Minerale, die in der Tonfraktion ($< 2 \mu m$) vorkommen.
- verleihen Tongesteinen und tonigen Böden ihre Plastizität, ihre Quellfähigkeit und ihr Vermögen, Ionen und Moleküle zu sorbieren.
- von "geringer" Kristallinität , die zusammen mit der Schichtladung die Ursache für die hohe Reaktionsfähigkeit der Tonminerale in Böden ist.


Tab. 2.2-4 Variationsbereiche der chemischen Zusammensetzung wichtiger Tonmineralgruppen (in Masse-%).

Tonmineral	SiO ₂	Al ₂ O ₃	Fe ₂ O ₃	TiO ₂	CaO	MgO	K ₂ O	Na ₂ O
Kaolinite	4547	3840	0 0,2	00,3	0	0	0	0
Smectite	4255	028	030	00,5	03	0 2,5	00,5	03
Vermiculite	3345	718	312	00,6	02	2028	02	00,4
Illite	5056	1831	2 5	00,8	02	1 4	47	01
Chlorite	2235	1548	0 4	00,2	02	034	01	01

Mineralneubildung: Tonminerale


1:1- oder Zweischichtminerale: Kaolinit

Wasserstoffbrücken OH-O zwischen den OH--lonen der Oktaeder und den O²--lonen der Tetraeder in der benachbarten Silikatschicht

Abb. 2.2–8 Polyedermodell eines Zweischicht-Silicats (Kaolinit). Die Kugeln symbolisieren H⁺-lonen.

2:1- oder Dreischichtminerale: Smectit, Vermiculit, Illit

Abb. 2.2–10 Polyedermodell eines Smectits. Die (nicht maßstabgerechten) Kugeln zwischen den Silicatschichten sind die austauschbaren Kationen.

Mineralneubildung: Tonminerale

Strukturtyp	Beispiel	Höhe der negativen Schicht- ladung pro Formeleinheit
1:1- oder	Kaolinit	0
Zweischicht-	Halloysit	0
Minerale	Serpentin	0
2:1- oder	Illit	>0,6
Dreischicht-	Vermiculit	0,60,9
Minerale	Smectit	0,20,6

Die **negative Schichtladung** der 2:1-Schichtminerale pro Formeleinheit kommt außer durch Si-Al-Ersatz in den Tetraedern durch Ersatz von Al³⁺ durch Mg²⁺ und Fe²⁺ in den Oktaedern zustande.

Oxidation

Viele Minerale enthalten Fe²⁺ und Mn²⁺. Sie werden daher im O₂-haltigen Verwitterungsmilieu (Kontakt mit der Atmosphäre) oxidiert. Dabei werden die Bindungen im Mineral gesprengt, das oxidierte Fe und Mn freigelegt und hydrolytisch zu Oxiden und Hydroxiden umgesetzt.

Tab. 2.2–7 Die Oxid-, Oxihydroxid- und Hydroxidminerale von Si, Al, Fe, Mn und Ti in Gesteinen und Böden.

Element	Name	Formel	Farbe
Si	[Quarz] ^{a)} Opal [Cristobalit]	SiO ₂ SiO ₂ · n H ₂ O SiO ₂	farblos farblos farblos
Al	Gibbsit (Böhmit) ^{b)} (Diaspor) (Korund)	γ -Al(OH) ₃ γ -AlOOH α -AlOOH α -Al $_2$ O $_3$	farblos farblos farblos farblos
Fe	Goethit Lepidokrokit Hämatit Maghemit [Magnetit] Ferrihydrit {Schwertmannit}°	α -FeOOH γ -FeOOH α -Fe $_2$ O $_3$ γ -Fe $_2$ O $_3$ Fe $_3$ O $_4$ 5 Fe $_2$ O $_3 \cdot$ 9 H $_2$ O Fe $_8$ O $_8$ (OH) $_6$ SO $_4$	gelbbraun (7,31,6Y) orange (4,9YR7,9YR) rot (3,5R4,1YR) braunrot (6,2YR9,4YR) schwarz rotbraun (2,8YR9,2YR) orange (6,2YR0,3Y)
Mn	Vernadit Birnessit ^{d)} Lithiophorit ^{e)} (Pyrolusit)	γ -MnO $_2$ · n H $_2$ O (Mn $_2^{3+}$ Mn $_7^{4+}$)O $_{18}$ · R (H $_2$ O) $_n$ [Al $_2$ Li(OH) $_6$] [Mn $_5^{4+}$ Mn $_7^{3+}$ O $_{12}$] MnO $_2$	schwarzbraun schwarzbraun schwarzbraun schwarzbraun
Ti	Anatas [Rutil]	TiO ₂ TiO ₂	hellschwarz
Fe + Ti	[Ilmenit] Pseudorutil	FeTiO ₃ Fe _{2-x} Ti ₃ O _{9-x} (OH) _{3x}	schwarz ?

Oxid- Oxihydroxid- und Hydroxidminerale von Si, Al, Fe und Ti in Gesteinen und Böden

Goethit, Lepidokrokit, Hämatit

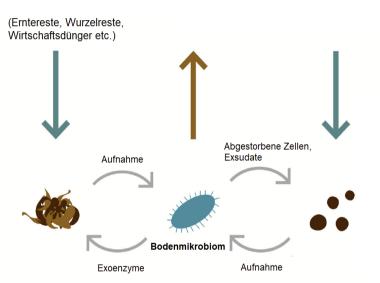
Goethit: α-FeOOH

- An der Erdoberfläche sehr stabiles und deshalb weit verbreitetes Eisenoxihydroxid
- Verwitterungsprodukt vorwiegend in gemäßigten Klimaten
- entsteht bei langsamer Fe-Nachlieferung aus Fe²⁺-haltigen Mineralen und niedrigen Fe-Konzentrationen in der Bodenlösung. Der Goethit verleiht vielen Böden der mittleren Breiten ihre charakteristische gelbbraune Farbe.

Lepidokrokit: y-FeOOH

• Eisenoxihydroxid, entsteht sekundär aus Fe²⁺-haltigen Lösungen. Bevorzugtes Auftreten in Grund- bzw. Stauwasserbeeinflussten Bereichen. Bedingt die orange Färbung redoximorph geprägter Horizonte. Er ist metastabil und wandelt sich langsam in Goethit um.

Hämatit: α-Fe₂O₃

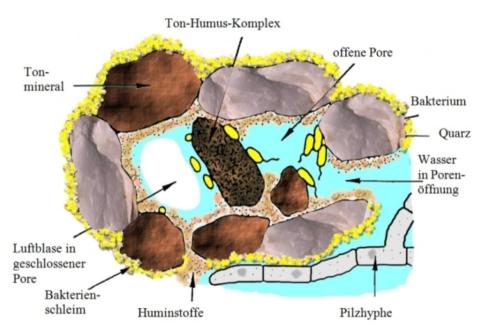

- entsteht bei der Verwitterung in Böden wärmerer Klimate
- subtropische, tropische Böden werden dadurch oft leuchtend rot gefärbt.

Biologische Verwitterung und biologische Prozesse

Partikuläre organische Substanz / Particulate organic matter (POM)

Gelöste organische Substanz / Dissolved organic matter (DOM) **Biologische Verwitterung:** durch Pflanzenwurzeln, Bakterien, Algen und Pilze. Die Hauptwirkung geht von biotisch produzierten Säuren aus.

Zersetzung: Abbau organischer Substanz


Mineralisierung: vollständiger mikrobieller Abbau zu anorganischen Stoffen (CO₂, H₂O), bei dem auch die in den organischen Stoffen enthaltenen Pflanzennährelemente freigesetzt werden.

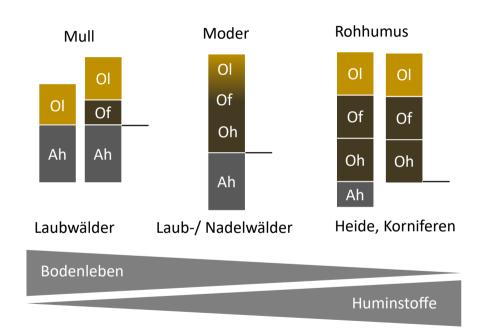
Humifizierung: Synthese amorpher, vielfach aromatischer polymerer Stoffe (Huminstoffe); Umwandlung und Bindung organischer Substanz im Boden; Stabilisierung gegenüber Mineralisierung.

https://www.landwirtschaftskammer.de

Biologische Verwitterung und biologische Prozesse

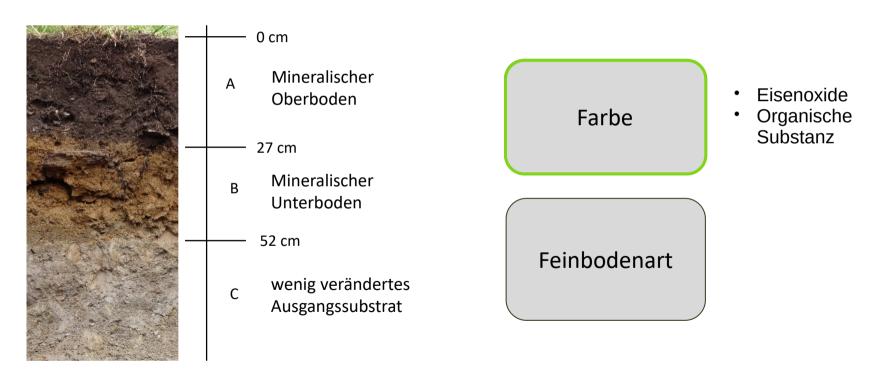
Stabilisierungsprozesse organischer Bodensubstanz




Die organische Bodensubstanz wird durch verschiedene Stabilisierungsprozesse gegen fortschreitenden Abbau (durch Mikrorganismen) geschützt.

- Von besonderer Bedeutung ist dabei eine Bindung an Tonminerale (Ton-Humus-Komplex).
- Zudem stellen Bodenaggregate einen physikalischen Schutz dar.

https://www.lfl.bayern.de


Humusformen

Biologische Prozesse: Akkumulation organischer Bodensubstanz

Rückblick

Exkurs: Bodenprofilansprache

- Die Farbansprache bei Feldaufnahmen erfasst die Parameter:
 - ✓ **Farbton** (engl. *Hue*)
 - ✓ Dunkelstufe (engl. Value)
 - ✓ Intensität (engl. Chroma)

⇒Hue Value/Chroma Beipiel: 7,5YR 5/4

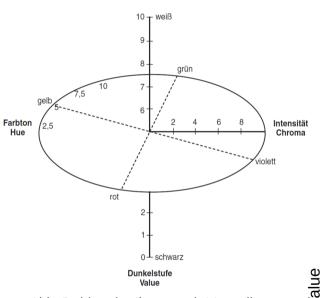
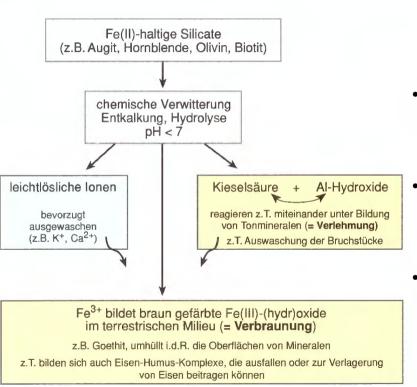



Abb. Farbbeschreibung nach Munsell Amelung et al., 2018

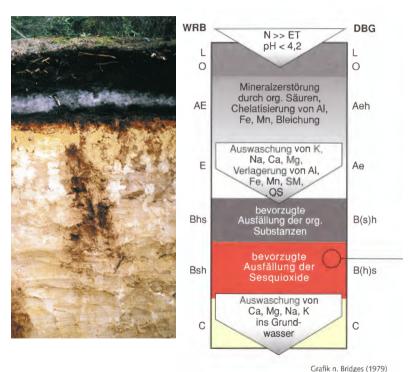
Munsell-Farbtafel


Chroma

Verbraunung und Verlehmung

Braunerde

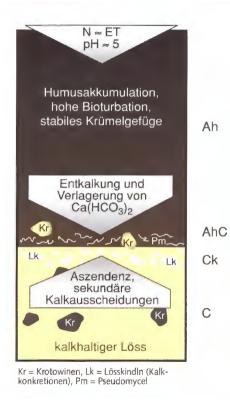
https://www.bodenwelten.de/



- Im Laufe der chemischen Verwitterung wird Fe²⁺ aus den Fe-haltigen primären Mineralen freigesetzt.
- Es oxidiert zu Fe³⁺ und bildet im gemäßigten Klima i.d.R. braun gefärbte Eisenoxide wie den Goethit (Verbraunung)
- Aus den freigesetzten
 Kieselsäure- und Al-haltigen
 Fragmenten und Ionen können
 in situ Tonminerale (Illite,
 Smectite, Vermiculite)
 entstehen (Verlehmung)

Grafik n. Hintermaier-Erhard & Zech (1997)

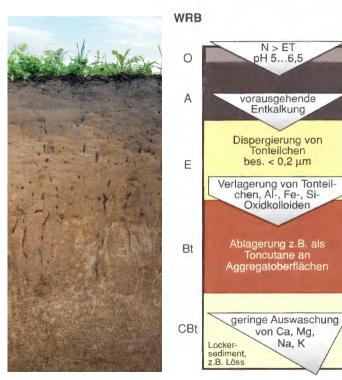
Podsolierung


Bei niedrigem pH-Wert werden primäre und sekundäre Minerale zerstört und die Bruchstücke zusammen mit Huminstoffen (DOM) verlagert.

- basenarmes, quarzreiches und gut durchlässiges Ausgangsgestein, schwer abbaubare Streu und fehlende Bodenwühler begünstigen die Akkumulation von Rohhumus, in dem saure, niedermolekulare organische Säuren entstehen, die als Komplexbildner wirken.
- Verlagerung: Ionar oder als organische Komplexe

Humusakkumulation & Bioturbation

Schwarzerde



- Sehr hohe ober- und unterirdische Biomasseproduktion
- Tiefgründige Humusakkumulation durch wühlende Bodentiere
- Stabilisierung der organischen Substanz durch Ton-Humus-Komplexe

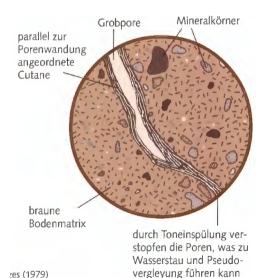
Tonverlagerung (Lessivierung)

Parabraunerde

https://boden-des-jahres.de/

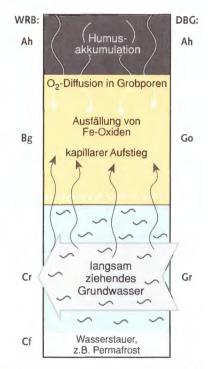
Zech et al., 2014.

- Mechanische Verlagerung insb. Der Feintonfraktion
 - begünstigt durch:


DBG

Al

Bt-C


- → pH-Wert zwischen 5...6,5 (Dispergierung der Tonminerale)
- Periodische
 Austrocknung der
 Böden (Entstehung von
 Grobporen und
 Trockenrissen)

Toncutane

Vergleyung

Gley

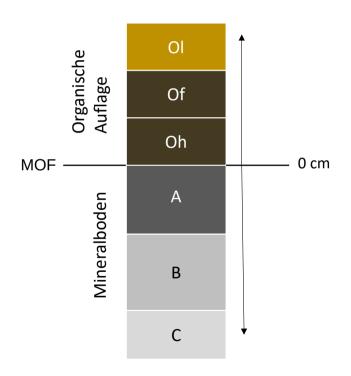
- Im Profil hoch anstehendes Grundwasser oder oberflächennahes Hangzugswasser
- Der Unterboden ist ständig vernässt
- redoximorphe Merkmale durch Sauerstoffmangel
- Bei niedrigem Redoxpotenzial kommt es zur Mobilisierung von Feund Mn-Verbindungen, die lateral mit dem Grundwasserstrom oder aszendent mit dem Kapillarwasser verlagert werden

Zech et al., 2014.

Zech et al., 2014.

Pseudovergleyung

Periodischer Wasserstau


Wasserstau kann unterschiedliche Gründe haben:

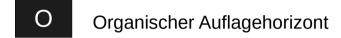
- Vorhandensein eines Bodenhorizontes mit sehr feiner, tonreicher Textur, entweder primär aus dem Bodenausgangsmaterial (Schichtung), oder sekundär durch die Pedogenese als starke Einlagerungsverdichtung, zum Beispiel durch Tonverlagerung
- Haftnässe durch extrem viele Mittelporen, die sehr langsam dränen
- anthropogene Verdichtung (Landwirtschaft)

https://www.bmleh.de/

Horizontsymbole

Die Horizonte werden mit Horizontsymbolen bezeichnet. Diese bestehen aus

- **Großbuchstaben**, die den hauptsächlichen bodenbildenden Prozess ihrer Entstehung kennzeichnen (Hauptsymbole) und
- aus ihnen zugeordneten Kleinbuchstaben (Zusatzsymbole). Diese kennzeichnen weitere Horizontmerkmale


MOF = Mineralbodenoberfläche

Das Horizontsymbol kennzeichnet einen grundlegenden bodenbildenden Prozess

A (1 1 1 1	One in the Colorest of Minerally days also sufficiently
Auflagehorizont	Organische Substanz auf Mineralboden oder auf Torf aufliegend oder in Zwischenräumen von Grobbodenpartikeln liegend, die ein Gerüst bilden.
Oberbodenhorizont	Lage an der Mineralbodenoberfläche (soweit nicht fossil oder reliktisch) oder unter einem anderen Oberbodenhorizont, soweit die Merkmale zutreffen.
Unterbodenhorizont	Rezenter Bodenbildungshorizont, Lage zwischen Oberboden- und Untergrundhorizonten.
	Hinweis: Ober- und Unterbodenhorizonte und die dazugehörigen Teile von Haupthorizonten bilden zusammen das Solum.
Untergrundhorizont	Horizont ohne wesentliche von der Geländeoberfläche wirkende pedogene Veränderungen; Lage unterhalb von Ober- und Unterbodenhorizonten.
Haupthorizont	Mit einem eigenen Hauptsymbol bezeichneter Horizont, der sich nicht eindeutig einer der übrigen Kategorien zuordnen lässt.

Ad-hoc-AG Boden (2024)

Horizonthauptsymbole [Auswahl]

A Mineralischer Oberbodenhorizont mit Akkumulation org. Substanz

Mineralischer Unterbodenhorizont, durch vertikal im Profil verlagerte Stoffe angereichert (Illuvialhorizont)

B Mineralischer Unterbodenhorizont

C Mineralischer Untergrundhorizont (aus Locker- oder Festgestein gebildet)

Eluvialhorizont: Mineralischer Haupthorizont durch Verlagerung von Tonmineralen, Eisen(hydr)oxiden oder Humus verarmt

Mineralischer Haupthorizont unter Stau- oder Haftwassereinfluss entstanden

Mineralischer Haupthorizont unter Grundwassereinfluss entstanden

S

G

Nachgestellte Zusatzsymbole für pedogene Merkmale [Auswahl]

- h Durch Humusanreicherung geprägt; kombinierbar mit A
- h humifiziert; kombinierbar mit O
- Durch Prozesse der Verwitterung entstanden, kombinierbar mit B, C,...
- d wasserstauend; kombinierbar mit S
- durch Haftnässe geprägt, kombinierbar mit S
- mit Oxidationsmerkmalen, kombinierbar mit G....
- mit Reduktionsmerkmalen, kombinierbar mit G,...

gepflügt oder anderweitig regelmäßig bearbeitet mit A,...

- erkennbar mit
 Sekundärcarbonat angereichert
- tonverarmt, lessiviert; kombinierbar mit E
- durch Einwaschung mit Ton angereichert (Illuvialhorizont); kombinierbar mit K

Vorangestellte Zusatzsymbole für geogene/anthropogene Merkmale [Auswahl]

- carbonatisch, Ausgangsgestein des Horizontes ist ein Carbonat- oder Sulfatgestein
- mergelig, Ausgangsgestein des Horizontes ist ein mergeliges Gestein
- fossil, Horizont, der nach seiner Entstehung begraben wurde
- massiv, Horizont aus auch im feuchten Zustand mit dem Spaten nicht grabbares Gestein, z.B. Granit
- reliktisch, Horizont, dessen Bodenbildungsprozess aufgrund einer Änderung der bodenbildenden Faktoren nicht mehr aktiv ist
- S Horizont durch Hangwasser beeinflusst

Horizonte mit mehreren Merkmalen

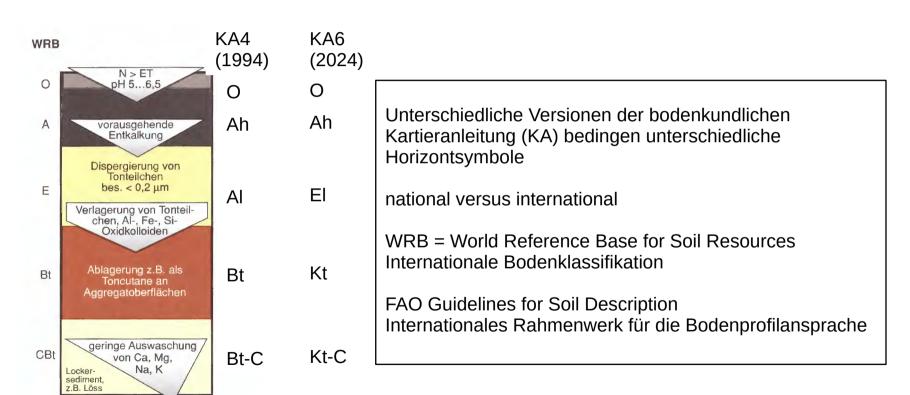
Ein Abweichungshorizont erfüllt alle Kriterien des Stammhorizonts und zusätzlich Abweichungskriterien

- Bcv = Bv-Horizont mit sekundärer Anreicherung von Carbonat
- Srw = Sw-Horizont mit ausgeprägten Reduktionsmerkmalen

In **Übergangshorizonten** überlagern sich Merkmale unterschiedlicher pedogener Prozesse (bis zu drei Hauptsymbole, die durch Bindestriche (–) verbunden werden. Das zu Beginn stehende Symbol bezeichnet die geringste Ausprägung.

- Sw–Bv = Bv-Horizont mit <10 Flächenprozent Nassbleichungs- und Oxidationsmerkmalen Bei Übergangshorizonten mit dem gleichen Haupsymbol wird dieses nur einmal genannt
- Swd vereinfachend f

 ür Sw


 Sd

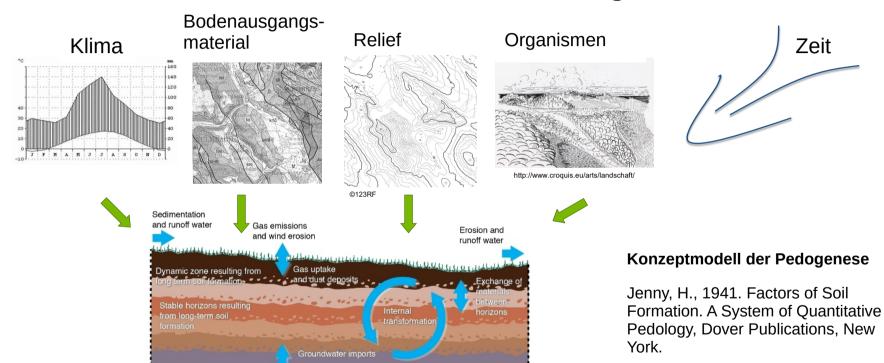
Reliktische oder fossile Bodenbildung: Ein Horizont entwickelt sich aus einem anderen Horizont einer früheren, abgeschlossenen Pedogenese: Kennzeichnung durch Gradzeichen (°). Das Symbol des rezent gebildeten Merkmals steht hinten

• fAh°Sd = Stauhorizont (Sd) aus begrabenen Ah-Horizont

Verzahnungshorizonte: Bis zu drei Bereiche verschiedener Horizonte kommen nebeneinander vor (+).

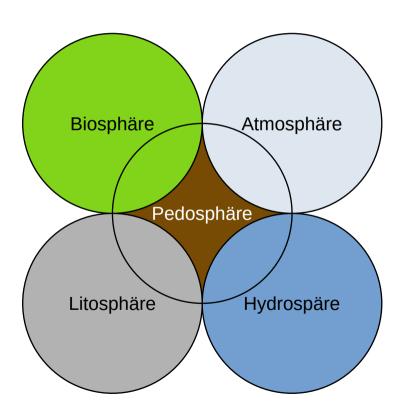
Horizontsymbole

Exkurs Bodenklassifikation


Braunerden haben einen durch Verwitterung, Verbraunung und Verlehmung entstandenen Bv-Horizont mit ausgebildetem Bodengefüge. Standard-Horizontfolge des Normsubtyps: Ah/Bv/..C..

- 1. a) Bv-Horizont vorhanden und < 4 dm unter MOF beginnend oder
 - b) Ah-, Ax-, Au- oder A..p-Horizont vorhanden und bis ≥ 4 dm unter MOF reichend und unmittelbar über Bv-Horizont **und**
- 2. keine dominanten P..- oder T..-Horizonte < 3 dm unter MOF vorhanden und
- 3. unter dem Bv-Horizont keine dominanten V..-Horizonte bis ≥ 4 dm unter MOF reichend vorhanden **und**
- 4. keine dominanten S..- und G..-Horizonte < 4 dm unter MOF vorhanden und
- 5. Ks- oder Kh-Horizonte, sofern vorhanden, bis < 1,5 dm unter MOF reichend

MOF = Mineralbodenoberfläche


Die bodenbildenden Faktoren steuern die Pedogenese

Leaching of water and dissolved and suspended materials

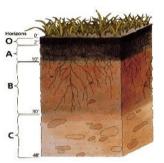
© 2013 Nature Education

Die Pedosphäre

Was ist Boden?

"Die **Pedosphäre** ist die Gesamtheit aller Böden. Sie ist ein zusammenhängender Bereich der oberen Erdkruste, der Bodendecke. Sie bedeckt das Festland und den Grund der Gewässer. Überall dort, wo sich die **Lithosphäre**, die **Atmosphäre**, die **Biosphäre** und die **Hydrosphäre** durchdringen, ist Boden bzw. Pedosphäre." (Amelung et al., 2018)

Wo ist kein Boden?


Begriffe: Pedon, Bodentyp und Bodenprofil

Die kleinste räumliche Einheit einer Bodendecke ist das **Pedon.** Es nimmt eine Grundfläche von etwa 1...100 m² ein.

Ein **Bodentyp** hat eine charakteristische Abfolge von Bodenhorizonten spezifischer Eigenschaften. Die Horizonte müssen dafür oftmals bestimmte Mindestkriterien erfüllen hinsichtlich ihrer Mächtigkeit, Ausprägung und Lage im Profil.

Beispiel: (Norm-)Braunerde mit Ah/Bv/C – Profil. Weitere Vorgaben gemäß KA6 siehe Folie 44.

Die Bodenprofilansprache erfolgt anhand eines **Bodenprofils** in einer Schürfgrube (oder mittels Bohrstock).

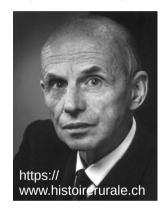
Pedon


DOI:10.21428/594757db.77e18bfa

Bodentyp: Braunerde; Ausgangsgestein: Kalkstein
A-Horizont: Oberboden
B-Horizont: Unterboden mit Besonderheiten: T (Lösungsrückstand von Kalkstein)

Bedeutende Bodenkundler (Pedogenese, Bodenvergesellschaftung)

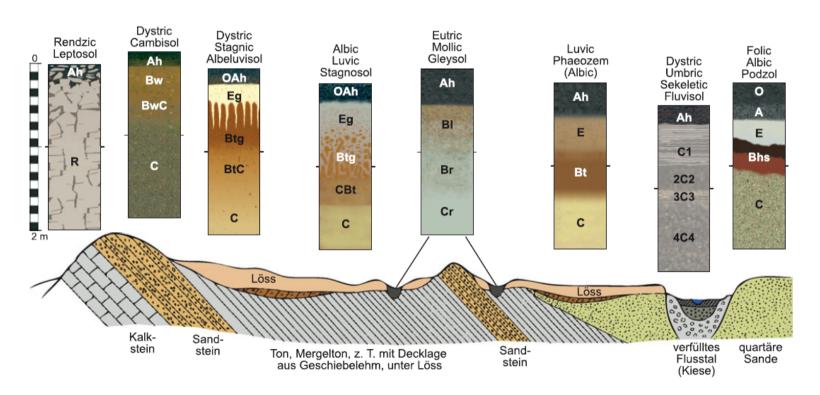
Wassili Dokutschajew (1846 – 1903)


Bodenbildende Faktoren

Dokuchaev, V. (1893); The russian steppes: study of the soil in Russia its past and present. (ins Englische übersetzt von John Martin Crawford) Geoffrey Milne (ca. 1899 - 1942)

Catena = Reliefsequenz: Charakteristische, reliefbestimmte Abfolge von Böden

Milne, G. (1935): Some suggested units for classification and mapping, particularly for East African soils. In Soil Research, Band 4. S. 183–198.


Hans Jenny (1899-1992)

Konzeptmodell der Pedogenese S= f(cl, o, r, p, t)

Jenny, H. (1941). Factors of Soil Formation: A System of Quantitative Pedology

Bodenvergesellschaftung, Bodenlandschaften

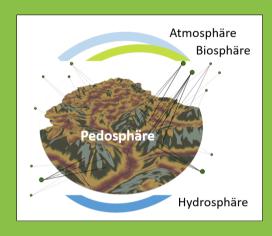
Zusammenfassung

- Bodenbildende Faktoren
- Silikate
- Physische, chemische und biologische Prozesse der Pedogenese:
 - → P: phys. Verwitterung, Erosion, Transport
 - → C: chem. Verwitterung, Hydrolyse, Oxidation, Tonmineralneubildung
 - → B: biol. Verwitterung, Zersetzung, Mineralisierung, Humifizierung
 - → Zusammenwirken phys., chem. und biol. Prozesse: Lessivierung, Podsolierung, Vergleyung,...
- Exkurs Bodenprofilansprache: Horizontsymbole, Farbe

Quellen

Ad-hoc-AG Boden (2024). Bodenkundliche Kartieranleitung, KA6. Band 1 & Band 2. Hannover. ISBN 978-3-510-96869-5

Amelung, W., Blume, H.-P., Fleige, H. et al. (2018). Scheffer/ Schachtschabel. Lehrbuch der Bodenkunde. 17. Auflage, Springer Spektrum, Berlin. ISBN 978-3-662-55870-6


Zech, W., Schad, P., Hintermaier-Erhard, G. (2014). Böden Der Welt. 2. Auflage, Springer Spektrum, Berlin. ISBN 978-3-642-36574-4

DANKE

für die Aufmerksamkeit!

Prof. Dr. Mareike Ließ

WS 25/26

Applied Sciences for Like