Bodenkultur und Düngung – Grundlagen Düngung

AT3 - Wintersemester 2025/26

Prof. Dr. Carl-Philipp Federolf

15.10.2025

Essentielle Pflanzennährstoffe

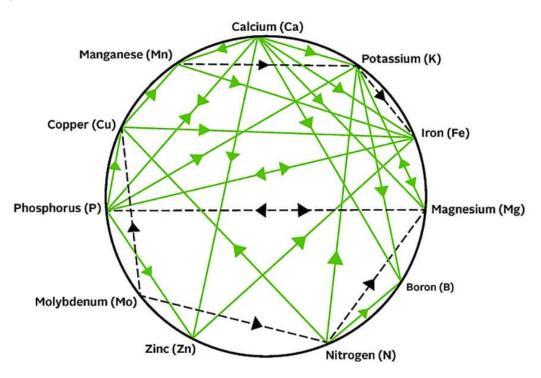
- Kernelemente der organischen Substanz:
 - ■C, O, H, N und P
- Des weiteren:
 - K, S, Ca, Mg, Mo, Cu, Zn, Fe, B, Mn, Cl, (Co, Ni)
- •Auch gruppiert als natürliche, makro-, meso-, und mikro- Nährstoffe
- Ein Nährelement muss vier wichtige Eigenschaften aufweisen:
 - normales Wachstum ohne dieses Element unmöglich
 - Mangel verschwindet bei Zugabe dieses NE
 - Das NE darf durch kein anderes ersetzbar sein
 - Einfluss auf den Stoffwechsel muss direkt sein

Was sind Nährstoffe?

- Nährstoff(NS) nennt man die Aufnahmeformeines Elementes durch die Pflanzen
- Nutzelementewirken günstig auf Wachstum und Entwicklung bestimmter
 Pflanzen ohne NE im eigentlichen Sinne zu sein
 - z.B. Na: für salzliebende Pflanzen (z.B. Rüben) positiv
 - z.B. Si: verbessert Phosphoraufnahme, Gewebefestigung
 - z.B. Co: wichtig für Luftstickstoffbindung durch Mikroben (für Mikroben essentiell)
- Problemelementesind Spurenelemente, die schon bei niedrigen Konzentrationen Schäden an den Pflanzen auslösen (z.B. Hg, Cd, Pb)

Massennährstoffe (Makronährstoffe) (%- Bereich)										
Bezei-			vorwiegend Hydro-							
chnung	regulatoren							en		
NE	C	O	Н	N	S	P	K	Ca	Mg	
NS	CO ₂	02	Н2О	NH ₄ ⁺	so ₄ 2-	H ₂ PO ₄ - HPO ₄ ² -	K ⁺	Ca ² +	Mg ²⁺	

	Spurenelemente (Mikronährstoffe) ppm-Bereich									
Bezeich- nung	vorwiegend Biokatalysatoren									
NE	Fe	Mn	Cu	Zn	В	Mo	Cl			
NS	Fe ²⁺ Fe ³⁺	Mn ²⁺	Cu ²⁺	Zn ²⁺	H ₂ BO ₃ -	MoO ₄ ² -	Cl-			

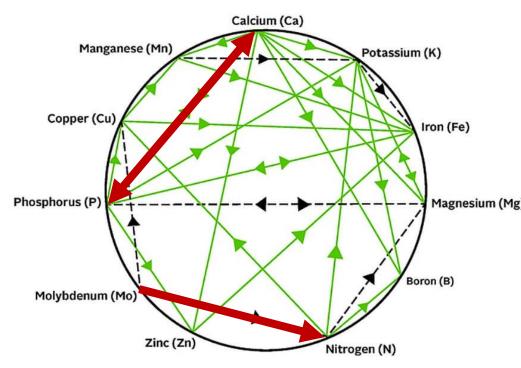

Charakter nicht eindeutig: Ni

Der organische Stickstoff-Pool – wie groß ist der denn? Kleine Rechenaufgabe!

- ■Beprobungstiefe im Acker 30 cm →3000 m³ Boden pro ha
- Rohdichte 1,5 t / m³
- 1% organischer Kohlenstoff
- Humus C/N: 15

- →4500 t Boden pro ha
- →45 t Kohlenstoff pro ha
- →3 t Stickstoff pro ha

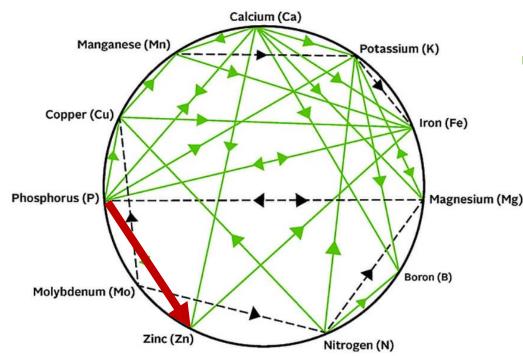
Nährstoffinteraktionen – Mulders chart



Decreased availability of a nutrient to a plant due to the action of another nutrient

STIMULATION ----

High level of a nutrient increases the demand by the plant for another nutrient


Nährstoffinteraktionen – Mulders chart

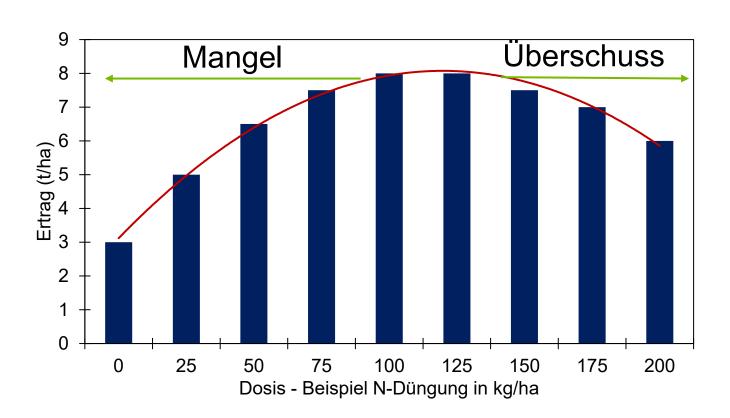
- Mangan aktiviert die Nitrat-Reduktase → steigert die N-Effizienz
- Ca und P gehen starke Bindung
 ein → schlechte
 Pflanzenverfügbarkeit

Nährstoffinteraktionen – Mulders chart

P und Zn müssen über die selben Aufnahmekanäle. P kann Zn verdrängen – Beispiel Mais Unterfußdüngung mit DAP > 100 kg/ha

Düngebedarf

Methoden zur Bestimmung des Düngebedarfs

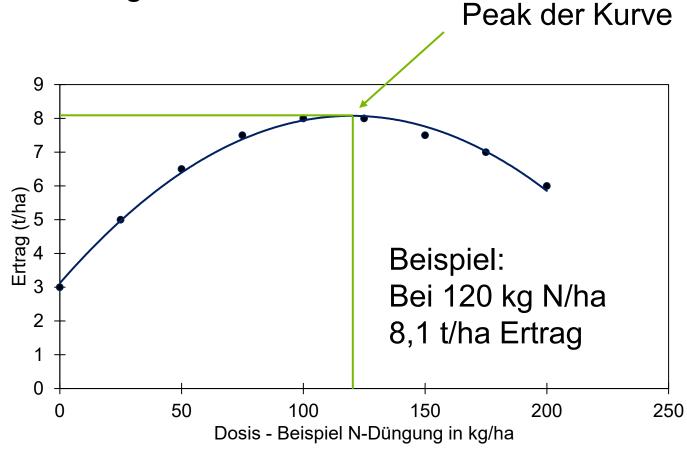

- Berechnungsverfahren
 - Faustzahlen/Bilanzen/Empfehlungen
 - Simulationsrechnungen
- Bodenuntersuchung
- Pflanzenanalyse

Ziel: ausgewogenes Nährstoffverhältnis für optimales Wachstum

Wie entstehen Düngeempfehlungen?

- Mehrere Feldversuche
- Dosis-Wirkungskurven

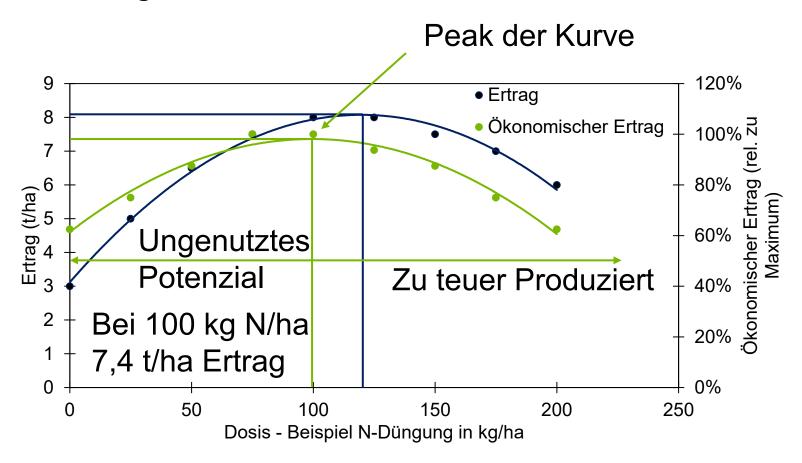
Typische Ertragskurve basierend auf einem Dosis-Wirkungs-Versuch


Wie entstehen Mängel?

- nährstoffarme Böden
- nährstofffixierende Böden
- witterungsbedingt (z.B. Mn-Mangel auf sandigen Böden in Trockenphasen)
- •induzierter Mangel (Aufnahmeantagonismus)

Wie entstehen Düngeempfehlungen?

- Mehrere Feldversuche
- Dosis-Wirkungskurven
- Optimum-Bestimmung


Typische Ertragskurve

Wie entstehen Düngeempfehlungen?

- Mehrere Feldversuche
- Dosis-Wirkungskurven
- Optimum-Bestimmung
- Ökonomische Berechnung
 - Bsp. Getreidepreis und Düngerpreis

Typische Ertragskurve

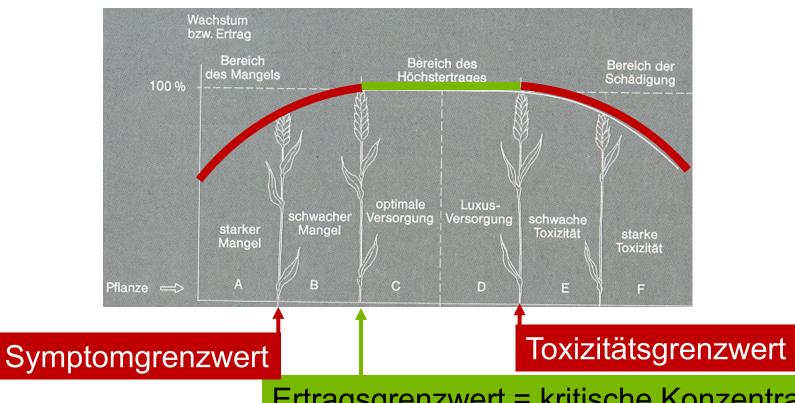
Düngeempfehlung

•Man macht an vielen Standorten Versuche über mehrere Jahre und kommt so auf relativ solide Empfehlungen.

 ABER: In der jeweiligen Saison, sind Wachstum (und damit Nähdstoffbedarf), sowie die Nährstoffverfügbarkeit, stark schwankend.

Kennzeichnung des Ernährungszustandes

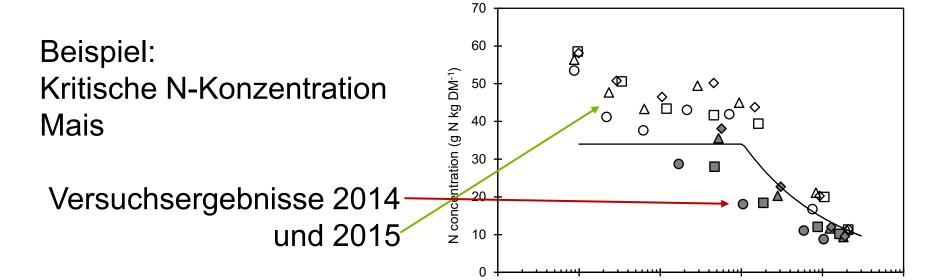
Kennwerte über den Ernährungszustand der Pflanzen erforderlich


- Mineralstoffe werden hauptsächlich über die Pflanzenwurzel aus dem Boden aufgenommen
 - → Nährstoffzustand des Bodens wird als gängigstes Kriterium für den Düngebedarf herangezogen
 - → Bodenanalyse

Kennzeichnung des Ernährungszustandes

 Kennwerte über den Ernährungszustand der Pflanzen erforderlich

- Problem: komplizierte Wechselwirkungen zwischen Pflanze,
 Rhizosphäre und Boden
 - → Bestimmung des pflanzenverfügbaren Anteils ist schwierig
 - nur die Pflanze selbst kann Auskunft über ihren Ernährungszustand geben
 - →Pflanzenanalyse


Die Dosis macht das Gift

Ertragsgrenzwert = kritische Konzentration

Kritische Nährstoffkonzentrationen

- Junges Gewebe hat h\u00f6here N\u00e4hrstoffkonzentrationen als \u00e4lteres
- → Kritische Konzentration abhängig vom Alter der Pflanzen

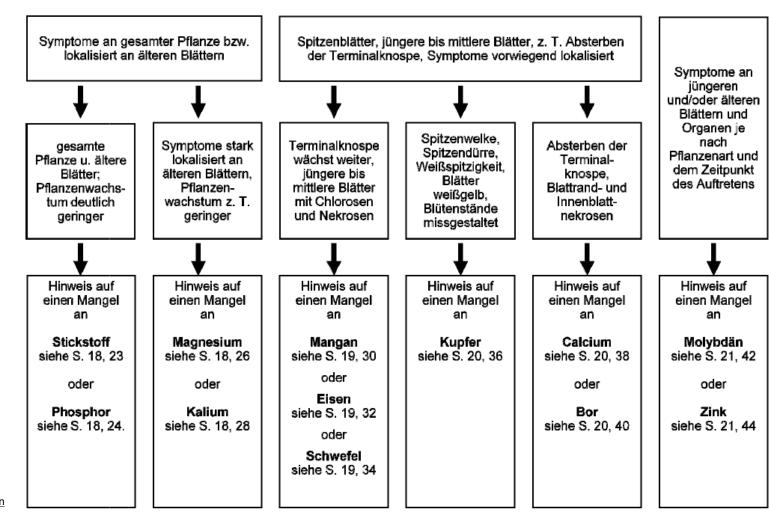
0,01

DM log₁₀ (t ha⁻¹)

10

Optische Mangelerscheinungen

- Stickstoffmangel: gelbe Blätter besonders an den älteren Blättern, da Stickstoff umverlagert wird.
- Schwefelmangel: gelbe Blätter an den jungen Blättern, da
 Schwefel nicht umverlagert wird.



Sammlung von Mangelsymptomen

- Bergmann Handbuch zur visuellen Diagnose von Ernährungsstörungen bei Kulturpflanzen – 3. Auflage als <u>eBook</u>
- <u>www.yara.de</u> oder <u>CheckIT App</u>
- hortipendium.de

Orientierendes Diagnoseschema zum Erkennen der Ursachen von Nährstoffmangel

...wenn Sie es genau wissen wollen: Pflanzenanalyse

- Vorteile
 - exakte Bestimmung kritischer Gehalte in wichtigen Organen
 - direkte Bestimmung!
 - bisherige Wachstumsbedingungen werden mit bewertet

- Nachteile
 - hoher Aufwand (Kosten/Zeit)
 - Ergebnisse kommen ggf. zu spät!
 - wenig lokale Eichdaten (Ertragsgrenzwerte) aus Feldversuchen vorhanden
 - Sorteneffekte werden nicht mitberücksichtigt

Wie funktioniert eine Pflanzenanalyse?

- Schließen Sie einige Bereiche von der Beprobung aus:
 - Vorgewende
 - Feldränder
 - Einzugsbereiche von Bäumen und Hecken
 - Bereiche in der Nähe von Strommasten
 - Stellen, die in der Vergangenheit als Lagerplatz für Stroh, Stallmist oder Silage verwendet wurden.



Wie funktioniert eine Pflanzenanalyse?

- •Grundsätzliches zur Probenahme:
 - Fügen Sie der Probe keine verletzten, absterbenden oder bereits abgestorbenen Pflanzenteile zu.
 - Ziehen Sie die Pflanzen nicht mit der Wurzel aus dem Boden.
 - Die Pflanzenproben dürfen nicht mit Boden verschmutzt sein.
 - Für die Aufbereitung und Analyse sind circa 150 200 Gramm Frischsubstanz erforderlich.

Wie funktioniert eine Pflanzenanalyse?

Bei akuten Entwicklungs- oder Wachstumsstörungen sollten Sie zwei Proben von einem Schlag nehmen. Ziehen Sie Teilproben gezielt von Stellen mit einem guten und schlechten Wuchs, beziehungsweise mit und ohne Auffälligkeit.

Mögliche Ganglinie: Die Probenahme soll repräsentativ über den Schlag erfolgen.

Kultur	BBCH-Code	Beschreibung	Probeorgan
Rüben	bis 39	Ab Juni bis zum Reihenschluss: über 90 % der Pflanzen benachbarter Reihen berühren sich	Gerade voll entwickelte Blätter
Getreide (außer Weizen)	28 bis 45	8 Bestockungstriebe sichtbar bis Blattscheide des Fahnenblattes geschwollen	Gesamte oberirdische Pflanze
<u></u>	24 bis 45	4 Bestockungstriebe sichtbar bis Blattscheide des Fahnenblattes geschwollen	Gesamte oberirdische Pflanze
Or Carl	31 bis 39 51 bis 79	Reihenschluss: über 90 % der benachbarten Reihen berühren sich	Jüngste, vollentwickelte
Kartoffeln		Knospen der 1. Blütenanlage (Hauptsproß) sichtbar (1-2 mm) bis 90 % der Beeren des 1. Fruchtstandes haben nahezu endgültige Größe erreicht (oder sind bereits abgefallen)	Blätter
nensteoban-Triesdo Mais	33 bis 36 51 bis 59 61 bis 69	3. Stengelknoten wahrnehmbar bis 6. Stengelknoten wahrnehmbar Beginn des Rispenschiebens (Rispe in Tüte gut fühlbar) bis Ende des Rispenschiebens (untere Rispenmitteläste sind voll entfaltet) Männliche Infloreszenz*: Beginn der Blüte; Mitte des Rispenmittelastes blüht Weibliche Infloreszenz*: Spitze der Kolbenanlage schiebt aus der Blattscheide bis Ende der Blüte	Mittlere Blätter Kolbenblätter
Hochschule Wein Raps	30 bis 53 55 57 bis 59 62 bis 65	Beginn des Längewachstums bis Hauptinfloreszenz* überragt die obersten Blätter Einzelblüten der Hauptinfloreszenz* sichtbar (geschlossen) Einzelblüten der sekundären Infloreszenzen* sichtbar (geschlossen) bis erste Blütenblätter sichtbar, Blüten noch geschlossen Ca. 20 % der Blüten am Haupttrieb offen, Infloreszenzachse verlängert bis Vollblüte: ca. 50 % der Blüten am Haupttrieb offen	Jüngste, vollentwickelte Blätter

L'ultur

DDCH Code

Doochroibuno

Blattanalyse bessere Rüben Triesdorf, Juni 2025

Nährstoffe

Parameter	Einheit	Ergebnis	Klasse	A B C D E -100 % -10 % Optimum +10 % +100 %	Optimum Min Max.	Median (n=106)
Stickstoff (N)	Ma% TS	6,07	D	♦N	4,3 - 5,9	4,9
Phosphor (P)	Ma% TS	0,50	С	•P	0,32 - 0,62	0,36
Kalium (K)	Ma% TS	4,90	С	•K	3,5 - 6,6	4,6
Magnesium (Mg)	Ma% TS	0,29	В	♦Mg	0,3 - 1,1	0,41
Calcium (Ca)	Ma% TS	0,36	Α	♦Ca	0,7 - 2	1,2
Schwefel (S)	Ma% TS	0,40	С	•S	0,3 - 0,6	0,36
Kupfer (Cu)	mg/kg TS	22,8	Е	♦ Cu	5,5 - 17	15
Mangan (Mn)	mg/kg TS	69,2	С	●Mn	40 - 200	110
Zink (Zn)	mg/kg TS	55,4	С	●Zn	25 - 80	57
Bor (B)	mg/kg TS	28,2	В	♦B	31 - 100	51
Molybdän (Mo)	mg/kg TS	0,44	С	●Mo	0,25 - 1	0,54
Eisen (Fe)	mg/kg TS	98,4	С	●Fe	70 - 200	185

Die Bodenuntersuchung

- Wachstum und Entwicklung der Pflanzen stellen einen Spiegel der jeweiligen Nährstoffsituation des Bodens dar
 - aus der Bodenanalyse muß der Grad der Nährstoffversorgung ableitbar sein
 - gelingt nur dann, wenn der gemessene Nährstoffgehalt in möglichst enger Beziehung zum pflanzenverfügbaren Nährstoffanteil steht
- •Welcher Gehalt ist Pflanzenverfügbar?
 - Gesamtgehalt?
 - Wasserlöslicher Anteil?
 - Extraktionsmittellöslicher Anteil?

Gesamtgehalt, austauschbarer und wasserlöslicher Anteil im Boden von Zn, Cu, Ni (µmol/kg trockener Boden)

	Gesamtge	austauschbar			wasserlöslich			
	Zn Cu	Ni	Zn	Cu	Ni	Zn	Cu	Ni
Bodentyp Podsol Rendzina	3200 400 2600 300	190 66	76 153	30 28	7 7	0,2 1,5	0,1 0,1	2 2

Für die Pflanze steht zur unmittelbaren Aufnahme nur der wasserlösliche Anteil und mittelbar ein Teil des austauschbaren Nährstoffs zur Verfügung obwohl der Gesamtgehalt hoch ist.

Bodenanalyse zur Düngebedarfsanalyse

- Vorteile
 - durch regelmäßige Untersuchung kann Veränderung frühzeitig erfasst werden
 - Kosten geringer (i. Vgl. zu Pflanzenanalyse)
 - eventl. kann auch Nachlieferung/Pufferung erfasst werden

- Nachteile
 - Kalibrierung schwierig(er)
 - Nährstoffverfügbarkeit und –aufnahme abhängig von externen Faktoren (Vorfrucht, Feuchtigkeit, pH-Wert, Nährstoffverhältnisse etc.)
 - räumliche Variabilität wird (meist) nicht berücksichtigt

Bohrstock:

- Anleitung: <u>Auf Moodle</u>
- Mischprobe aus 15 Einstichen
- Eine Probe auf max. 3 ha
- Einheitliche Teilflächen
 - schweren" und "leichten Böden"
 - Hanglagen mit Erosionserscheinungen ("oben", "Mitte" und "unten")
 - unterschiedlicher Vorfrucht eines Schlages

Vielen Dank für die Aufmerksamkeit