
Bodenkultur und Düngung – Stickstoff 1

AT3 - Wintersemester 2025/26

Prof. Dr. Carl-Philipp Federolf

05.11.2025

Nettomineralisation

	Nettomineralisation in %				
kg Norg/ha	1 %	3 %			
4000	40 kg N / ha	120			
5000	50	150			
6000	60	180			

- Treiber der Mineralisation:
 - Frische organische Substanz
 - Bodenleben
 - pH-Wert (>6)

- Temperatur
- Feuchtigkeit
- Sauerstoff = Bodenstruktur

Methoden zur Bestimmung des Düngebedarfs - Stickstoff

- Berechnungsverfahren
 - Faustzahlen/Bilanzen/Empfehlungen
 - Simulationsrechnungen
- Bodenuntersuchung
- Pflanzenanalyse

Ziel: ausgewogenes Nährstoffverhältnis für optimales Wachstum

Berechnungsverfahren

Kultur- und standortbezogene N-Obergrenze (n. DüV)

N-Sollwert [kg N/ha]

Summe aus

- N-Bedarfswert [kg N/ha] Gesamtpflanze (Tab. 1) und
- Zu- oder Abschlag (Tab. 2) aus der Differenz "5-jähriges Ertragsmittel" und "mittlerer Ertrag" (Tab. 1) [kg N/ha]

abzüglich:

- im Boden verfügbare Stickstoffmenge (N_{min}/Nitrat-N, NID) und Gleiche Anrechnung beider Größen, da NH₄-N in Ackerböden zum Zeitpunkt der Düngebedarfsermittlung in der Regel in vernachlässigbarer Menge vorliegt.
 - pflanzennutzbare N-Lieferung aus:

Ernteresten der Vorfrucht (Tab. 3)

Zwischenfrucht (Tab. 3)

organischer Düngung der letzten Jahre (Tab. 4) und Bodenvorrat (Humusgehalt) (Tab. 5)

Hinweis: Wenn im Herbst bereits eine Andüngung von Winterraps oder Wintergerste erfolgt ist, sind diese Düngungsmaßnahmen auf die im Frühjahr ermittelte Obergrenze anzurechnen. Angerechnet werden muss der ausnutzbare Stickstoff bei organischen Düngern: Nausnutzbar = Nausnutzbar * Mindestwirksamkeit (Anlage 3 DüV) oder Ammoniumgehalt bzw. Nausnutzbar (wenn dieser größer ist). Mineralische Dünger werden zu 100 % angerechnet.

TAB. 1: N-BEDARFSWERTE FÜR LANDWIRTSCHAFTLICHE ACKERKULTUREN IN ABHÄNGIGKEIT VOM ERTRAGSNIVEAU

Kultur	Ertragsniveau [dt/ha]	N-Bedarfswert ¹⁾ [kg N/ha]	Kultur	Ertragsniveau [dt/ha]	N-Bedarfswert ¹⁾ [kg N/ha]
Winterraps	40	200	Wintertriticale	70	190
Winterweizen A, B	80	230	Hafer	55	130
Winterweizen C	80	210	Körnermais	90	200
Winterweizen E	80	260	Silomais FM	450	200
Hartweizen	55	200	Zuckerrübe	650	170
Winterfuttergerste	70	180	Kartoffel	450	180
Winterbraugerste	70	140	Frühkartoffel	400	220
Sommerfuttergerste	70	175	Sonnenblume	30	120
Sommerbraugerste	50	140	Öllein	20	100
Winterroggen	70	170			

Bezieht sich auf das angegebene Ertragsniveau und die zu Vegetationsbeginn in 0 bis 90 cm Bodentiefe zu ermittelnde verfügbare Stickstoffmenge; entspricht dem N-Bedarf an Stickstoff während einer Anbauperiode ohne Zu- bzw. Abschläge.

TAB. 2: ZU- UND ABSCHLÄGE AUF GRUND VON ABWEICHENDEM ERTRAGSNIVEAU

Kultur	Ertragsdifferenz [dt/ha] ¹⁾	Höchstzuschläge bei höheren Erträgen [kg N/ha] je Einheit nach Spalte 2 ^{2), 3)}	Mindestabschläge bei niedrigeren Erträgen (kg N/ha) je Einheit nach Spalte 2 ³⁾
Raps	5	10	15
Getreide und Körnermais	10	10	15
Silomais	50	10	15
Zuckerrübe	100	10	15
Kartoffel (inkl. Frühkartoffel)	50	10	10

Die Ertragsdifferenz ist die Differenz zwischen dem Ertragsniveau nach Tabelle 1 und dem standortbezogenen Ertragsniveau im Mittel der letzten fünf Jahre. Weicht das tatsächliche Ertragsniveau in einem der letzten fünf Jahre um mehr als 20 % vom Ertragsniveau des jeweils vorangegangenen Jahres ab, kann statt des Ertragsniveaus, das im Jahr der Abweichung erreicht wurde, das Ertragsniveau des jeweils vorangegangenen Jahres für die Ermittlung der Ertragsdifferenz herangezogen werden.

Zu- und Abschläge werden erst nach Erreichen der vollen Ertragsdifferenz angerechnet.

Zuschläge bis maximal 40 kg N/ha.

³⁾ Bitte beachten: Es handelt sich um "Höchstzuschläge" und "Mindestabschläge".

TAB. 3: ABSCHLÄGE IN ABHÄNGIGKEIT VON VOR- UND ZWISCHENFRÜCHTEN

Vorfrucht (Hauptfrucht des Vorjahres)	Mindestabschlag [kg N/ha]
Grünland, Dauerbrache, Luzerne, Klee, Kleegras, Rotationsbrache mit Leguminosen	20
Rotationsbrache ohne Leguminosen, Zuckerrüben ohne Blattbergung	10
Raps, Körnerleguminosen, Kohlgemüse	10
Feldgras	10
Getreide (mit und ohne Stroh), Silomais, Körnermais, Kartoffel, Gemüse ohne Kohlarten	0
Zwischenfrucht	
Nichtleguminose, abgefroren	0
Nichtleguminose, nicht abgefroren - Im Frühjahr eingearbeitet - Im Herbst eingearbeitet	20 0
Leguminose, abgefroren	10
Leguminose, nicht abgefroren - Im Frühjahr eingearbeitet - Im Herbst eingearbeitet	40 10
Futterleguminosen mit Nutzung	10
andere Zwischenfrüchte mit Nutzung, keine Zwischenfrucht angebaut	0

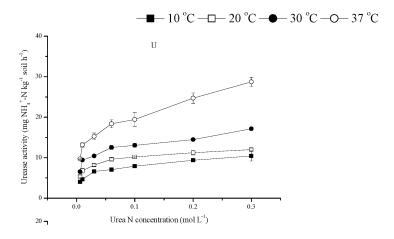
Liegt der Leguminosenanteil im Bestand bei 60 % und größer, handelt es sich um Leguminosen; beträgt er weniger als 60 % im Bestand, spricht man von Nichtleguminosen.

TAB. 4: ORGANISCHE DÜNGUNG DER LETZTEN JAHRE

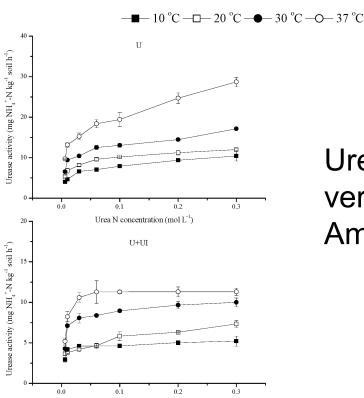
Düngemittel		Mindestabschlag [% v. Ges. N)
organische oder organisch-mineralische Dünger (außer Kompost)	Jahr 1 nach Aufbringung	10
	Jahr 1 nach Aufbringung	4
Kompost	Jahr 2 nach Aufbringung	3
	Jahr 3 nach Aufbringung	3

TAB. 5: ABSCHLÄGE AUF GRUND DER STICKSTOFFNACHLIEFERUNG AUS DEM BODENVORRAT

Humusgehalt [%]	Mindestabschlag [kg N/ha]
größer 4,0 (humos)	20

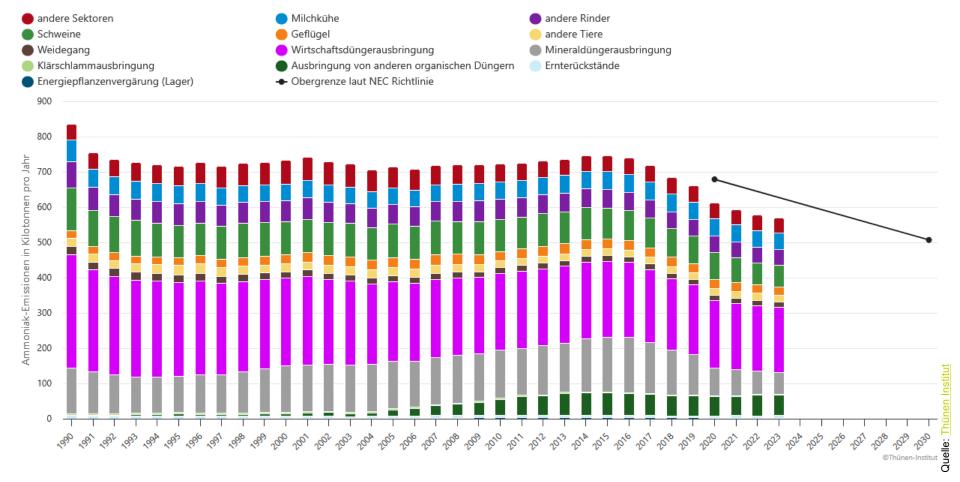

Urease

•Formel:


$$CO(NH_2)_2 + 2H_2O \rightarrow (NH_4)_2CO_3$$

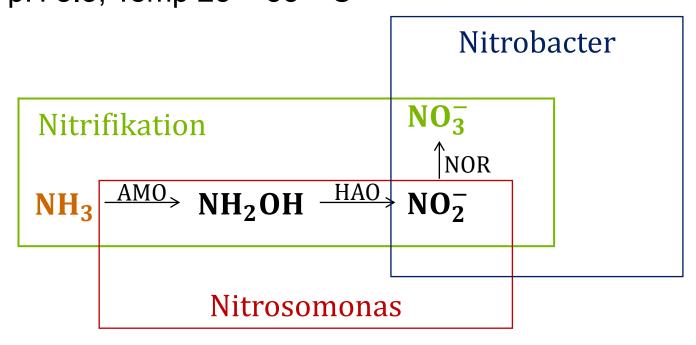
$$(NH_4)_2CO_3 + H^+ \rightarrow 2NH_4^+ + OH^- + CO_2$$

Ureaseaktivität ist abhängig von der Konzentration und der Temperatur


Ureaseaktivität ist abhängig von der Konzentration und der Temperatur

Ureaseinhibitoren verlangsamen die Ammonifiktation

Ammoniak-Emissionen in Deutschland von 1990 bis 2023



Nitrifikation

AMO = ammonia monooxygenase HAO = hydroxylamine oxidoreductase NOR = nitric oxide reductase

Beste Bedingungen: pH 8.3, Temp 25 – 33° C

Nitrifikation und Denitrifikation

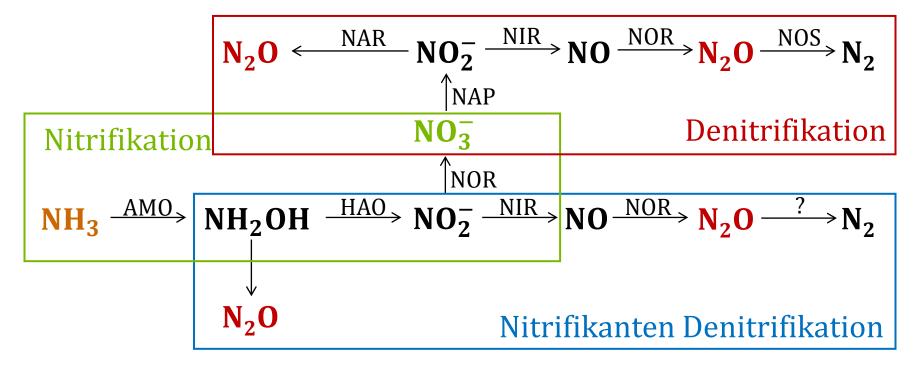
AMO = ammonia monooxygenase
HAO = hydroxylamine oxidoreductase
NOR = nitric oxide reductase
NIR = nitrite reductase
NOS = nitrous oxide reductase

NAR, NAP = nitrate reductase

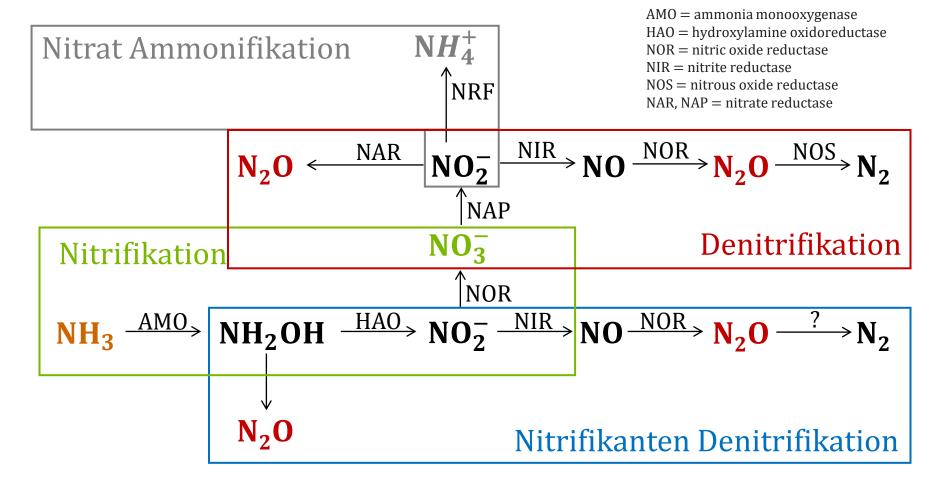
 $NO_2^- \xrightarrow{NIR} NO \xrightarrow{NOR} N_2O -$ Denitrifikation NO_3^- **Nitrifikation NOR** Bedingungen: Anaerob – Sauerstoffmangel, $NH_2OH \xrightarrow{HAO} NO_2$ Nitrat als Substrat Produkt N₂O bei viel Nitrat, N₂ bei wenig Nitrat

Nitrifikation und Denitrifikation

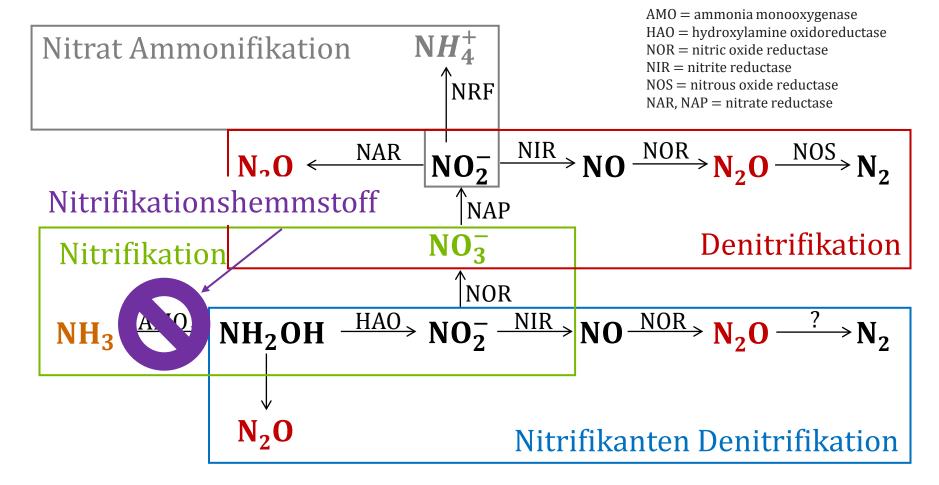
AMO = ammonia monooxygenase


HAO = hydroxylamine oxidoreductase

NOR = nitric oxide reductase


NIR = nitrite reductase

NOS = nitrous oxide reductase


NAR, NAP = nitrate reductase

Verändert nach: Arp, D. J., & Stein, L. Y. (2003). Metabolism of Inorganic N Compounds by Ammonia-Oxidizing Bacteria. *Critical Reviews in Biochemistry and Molecular Biology*, 38(6), 471–495. https://doi.org/10.1080/10409230390267446

Verändert nach: Arp, D. J., & Stein, L. Y. (2003). Metabolism of Inorganic N Compounds by Ammonia-Oxidizing Bacteria. *Critical Reviews in Biochemistry and Molecular Biology*, 38(6), 471–495. https://doi.org/10.1080/10409230390267446

Verändert nach: Arp, D. J., & Stein, L. Y. (2003). Metabolism of Inorganic N Compounds by Ammonia-Oxidizing Bacteria. *Critical Reviews in Biochemistry and Molecular Biology*, 38(6), 471–495. https://doi.org/10.1080/10409230390267446

Baggs, E. M., & Philippot, L. (2010). Microbial terrestrial pathways of N2O. In K. A. Smith (Hrsg.), Nitrous oxide and climate change (S. 4-36). Earthscan.

Ammoniumstabilisierte Dünger

- Nitrifikationsinhibitoren unterbinden zeitweilig die Umsetzung von NH₄
 zu NO₃
- Ziele:
 - N-Freisetzung an Bedarf der Kulturen anpassen
 - weniger Nitratverlagerung/-auswaschung, Lachgas-Emissionen
 - Düngungsstrategie: Zusammenfassung mehrerer Teilgaben

Ammoniumstabilisierte Dünger

Wirkungsdauer boden- und temperaturabhängig:

Ammonium

50 % Umsetzung

Nitrat

Umwandlung von Mineraldünger z.B. Harnstoff (Buchner 1985)

Bodentemperatur	Umwandlungszeit
5 °C	6 Wochen
20 °C	1 Woche

Verzögerung durch Nitrifikationsinhibitoren:

Bodentemperatur	Umwandlungszeit
5 °C	10 – 14 Wochen
20 °C	5 - 8 Wochen

Nitrifikations- und Ureaseinhibitoren

Wirkstoff	Abkürzung	Formel	Zulassung gemäß DüMV 2019
Dicyandiamid Didin	DCD	C2H4N4	vor 2003
3-Methylpyrazol	3-MP	C4H6N2	vor 2003
1H-1,2,4-Triazol	Triazol	C2H3N3	2003
3,4-dimethyl-1H-pyrazole, 3,4-Dimethylpyrazolphosphattec	DMPP	C5H8N2	2003
N-((3(5)-Methyl-1H-pyrazol-1-yl)methyl)acetamid Alzon	MPA	C7H11N3O	2015
Nitrapyrin [2-chloro-6-(trichloromethyl)pyridin]	Nitrapyrin	C6H3Cl4N	2015
Isomerengemisch aus			
2-(4,5-Dimethyl-1H-pyrazol-1-yl)bernsteinsäure und tec E	/O MPSA (Entec		
2-(3,4-Dimethyl-1H-pyrazol-1-yl)bernsteinsäure	EVO)	C9H12N2O4	2019
N-(2-Nitrophenyl)phosphorsäuretriamid	2-NPT	C6H9N4O3P	2008
N-Butyl-thiophosphortriamid	NBPT	C4H14N3PS	2015
N-Propylthiophosphortriamid	NPPT	C3H12N3PS	2015

N_{min} Werte werden veröffentlicht

Tabelle 1: Vorläufige N_{min} -Werte für Sommerungen und endgültige N_{min} -Werte für Winterungen mit einer tiefen (0-90 cm) Durchwurzelung des Bodens (kg N/ha).

		er- /ern		der- /ern		er- alz		er- nken		ttel- nken		ter- iken		iwa- en
Hauptfrucht	Vor- läufig	End- gültig												
W-Raps	46	42	46	44	46	43	54	48	51	47	50	49	46	38
W-Gerste	55	52	55	51	57	52	57	51	55	50	60	56	51	46
Triticale, W-Roggen	53	51	58	54	48	46	58	52	52	49	56	57	52	47
W-Weizen, Dinkel	51	52	53	52	56	55	65	58	58	58	64	63	54	54
S-Weizen, Durum, S-Roggen, S-Raps	59		54		55		67		60		63		62	
Z-Rüben, F-Rüben	60		50		50		63		64		58		56	
Silomais, Körnermais	60		63		55		64		64		63		57	
Sonstige Fruchtarten	61		53		54		62		61		63		59	

Im Roten Gebiet (aktuell hinfällig...) jährliche Untersuchung pro Bewirtschaftungseinheit

- Zeitpunkt der Probenahme
 - Zwischen der Nmin-Probennahme und der letzten
 Bodenbearbeitung/Düngung müssen mindestens sechs Wochen liegen.
 - Frühjahr bei einer Winterung: zu Vegetationsbeginn, ca. ein bis zwei Wochen vor der Düngung
 - Frühjahr bei einer Sommerung: ca. ein bis zwei Wochen vor der Düngung
 - Herbst: November nach Vegetationsende

- ■i.d.R. drei Tiefen 0 30, 30 60, 60 90
 - Bei flachgründigen Standorten, oder Sommerungen nur zwei.
- Handprobennahme mit drei Bohrstöcken:

- ■i.d.R. drei Tiefen 0 30, 30 60, 60 90
 - Bei flachgründigen Standorten, oder Sommerungen nur zwei.
- Probennehmer mit einem Bohrstock:

Nmin Probennahme – Anzahl Einstiche

■15 – 20 je Probe

Auf heterogenen Flächen mehrere Proben

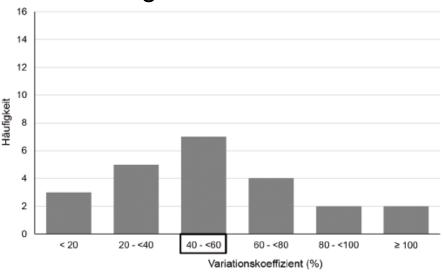
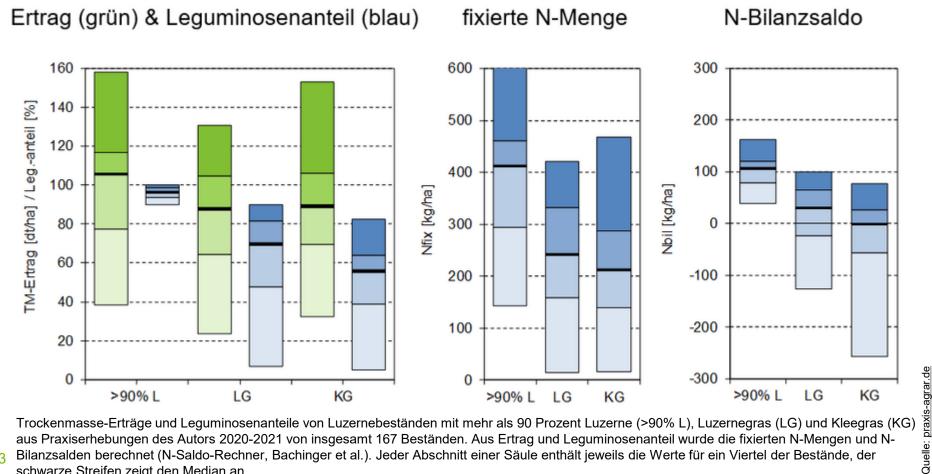
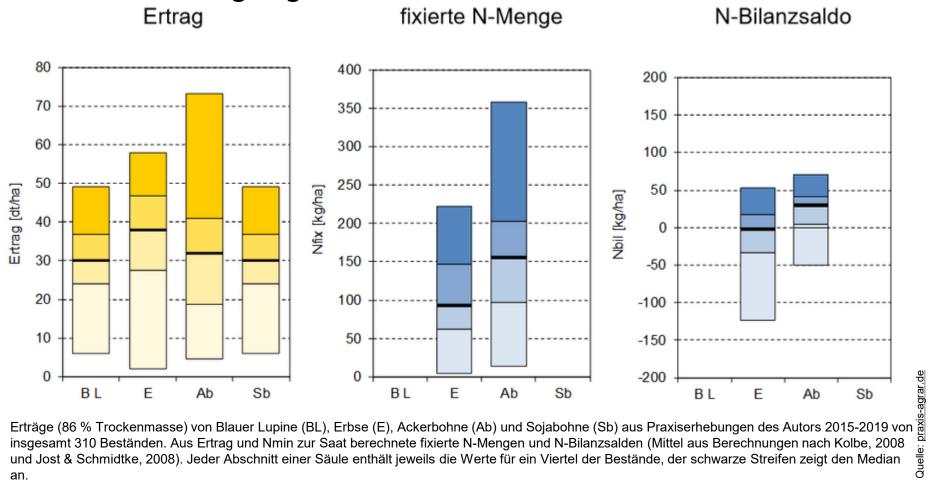


Abb. 3: Verteilung der Variationskoeffizienten (%) der N_{min}-Konzentrationen beider Beprobungstermine des Entwicklungsversuches

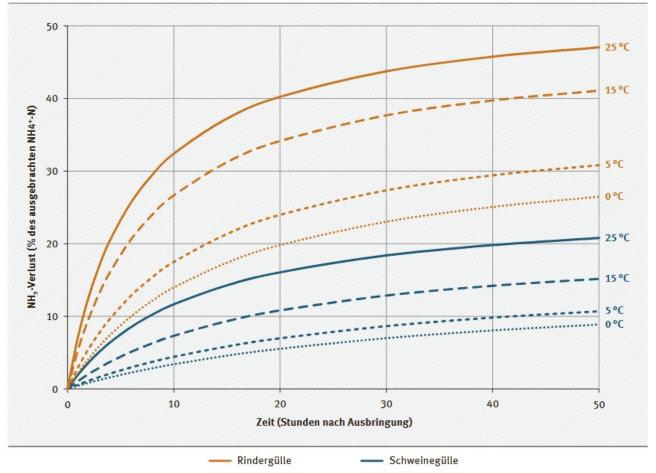

Nmin Probennahme – Verarbeitung

- Boden in die ausreichend mit wasserfestem Stift beschrifteten (Betrieb, Schlagbezeichnung, Tiefe, Datum der Probenahme)
 Kunststoffbeutel füllen
- Proben in Kühltaschen mit Kühlelementen sofort zur Untersuchung ins Labor bringen oder im Kühlschrank bei Temperaturen von maximal +2 °C aufbewahren - Nachmineralisierung
- Die Proben sollten im tiefgefrorenen Zustand zwischengelagert und transportiert werden

Nmin kann auch nach Düngung durchgeführt werden... ABER!



Stickstoffixierung Leguminosen



Trockenmasse-Erträge und Leguminosenanteile von Luzernebeständen mit mehr als 90 Prozent Luzerne (>90% L), Luzernegras (LG) und Kleegras (KG) aus Praxiserhebungen des Autors 2020-2021 von insgesamt 167 Beständen. Aus Ertrag und Leguminosenanteil wurde die fixierten N-Mengen und N-Bilanzsalden berechnet (N-Saldo-Rechner, Bachinger et al.). Jeder Abschnitt einer Säule enthält jeweils die Werte für ein Viertel der Bestände, der schwarze Streifen zeigt den Median an.

Stickstoffixierung Leguminosen

Temperaturabhängigkeit der Ammoniakfreisetzung von mit dem Schleppschlauch ausgebrachter Rinder- und Schweinegülle ohne Einarbeitung

Tab. 7: Reduktion der Ammoniakemission durch emissionsmindernde Ausbringtechniken (relativ zur Referenzmethode Breitverteiler) im Grasland - Messresultate einer internationalen Literatursynthese (Webb et al, 2010) Quelle: Huguenin-Elie, 2018

		Reduktion			
Ausbringtechnik	Anzahl (n) der Einzel- experimente	Mittelwert	Streubereich der Mittelwerte einzel- ner Publikationen		
Schleppschlauch	45	35 %	0-74 %		
Schleppschuh	37	64 %	57-70 %		
Schlitzinjektion	56	80 %	60-99 %		

Tab. 8: Reduktion der Ammoniakemission durch emissionsmindernde Ausbringtechniken (relativ zur Referenzmethode Breitverteiler) im Grasland - Messresultate einer Untersuchung in der Schweiz (Häni et al., 2016) Quelle: Huguenin-Elie, 2018

		Reduktion		
Ausbringtechnik	Anzahl (n) der Einzel- experimente	Mittelwert	Streubereich der einzelnen Experimente	
Schleppschlauch	7	51 %	22-68 %	
Schleppschuh	5	53 %	36-71 %	
Schlitzinjektion	1	76 %	-	

Stickstoffdünger

N-Formen und Wirkungsgeschwindigkeit

Cyanamid

Amid

Ammonium

Nitrat

langsam

Die wichtigsten N-Düngerformen

Gruppe	Typen-Bezeichnung	N %	N-Formen	Umsetzung im Boden
Ammonium- Dünger	Ammoniumsulfat = Ammonsulfat = schwefelsaures Ammoniak	21	(NH ₄) ₂ SO ₄	NH ₄ ⁺ : Volatilisation, Adsorption, Fixierung, Immobilisierung, Pflanzenaufnahme, Nitrifizierung
Nitrat-Dünger = Salpeter- Dünger	Kalksalpeter	15	Ca(NO ₃) ₂	NO ₃ ⁻ : Denitrifizierung, Ein(Aus)waschung, Immobilisierung, Pflanzenaufnahme
Ammonnitrat- Dünger	Kalkammonsalpeter = KAS Ammonsulfatsalpeter = ASS	27 26	NH_4NO_3 *CaCO ₃ NH_4NO_3 + $(NH_4)_2SO_4$	
Amid-Dünger	Harnstoff = Carbamid = Urea Kalkstickstoff = Cyanamid	46 19.8	$CO(NH_2)_2$; $CaCN_2 + C$	$CO(NH_2)_2 + H_2O$ Urease \rightarrow $(NH_4)_2CO_3 \rightarrow NH_4^+$ a) anorg. Hydrolyse: N=C-N=Ca + $2H_2O \rightarrow N$ =C-NH $_2$ + Ca(OH) $_2$ b) enzymatische u. anorg. Umsetzung: N=C-NH $_2$ + H $_2O \rightarrow$ $CO(NH_2)_2$
Ammonnitrat- amid-Dünger	Ammonnitrat-Harnstoff-Lösung = AHL	28	$NH_4NO_3 + CO(NH_2)_2$	

Vielen Dank für die Aufmerksamkeit