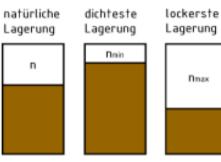
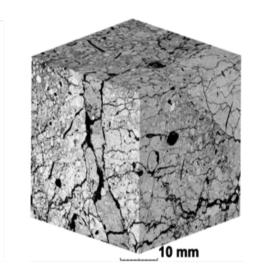

Bodenkultur und Düngung Porenvolumen und Wasserretention Prof. Dr. Mareike Ließ WS 25/26

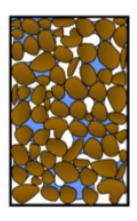

Lagerungsdichte

dichteste Lagerung

n - Porenanteil in der Natur

nnin - Porenanteil bei dichstester Lagerung


nnax - Porenanteil bei lockerster Lagerung


Yanulova, 2015

$$Dichte = \frac{m_{trocken}}{V_{gesamt}}$$

Porenraum

https://www.dbges.de/de/dbg-themen/komissionen/k1-bodenphysik-und-bodenhydrologie

Feststoffpartikel und Porenraum bilden zusammen die **Matrix.**

Das **Porenvolumen** (PV) kennzeichnet das Verhältnis des mit Luft und Wasser gefüllten Hohlraumvolumens zum Gesamtvolumen (V_{ges}).

 $PV = \frac{V_{ges} - V_F}{V_{ges}} = 1 - \frac{V_F}{V_{ges}}$

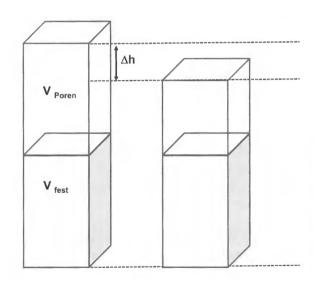
V_F = Volumen der Festsubstanz

Das PV beschreibt den Porenanteil

Sie können das PV auch aus der Dichte (ρ) berechnen.

$$PV = 1 - \frac{\rho_{ges}}{\rho_F}$$

Porenvolumen und Porenziffer


Änderung der Lagerungsdichte

Porenvolumen (eigtl. Porenanteil)

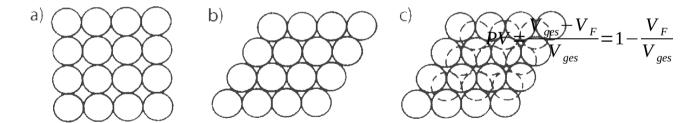
$$PV = \frac{V_{ges} - V_F}{V_{ges}}$$

Porenziffer

$$\varepsilon = \frac{V_{ges} - V_F}{V_F}$$

Bachmann et al. 2014

Das Gesamtvolumen eines Bodens als Summe von Poren- und Feststoffvolumen.


Wahl der Bezugsgröße: Das Gesamtvolumen ist nicht konstant, aber das Feststoffvolumen.

Porenvolumen und Porenziffer

Bei Kugeln gleicher Größe lässt sich das Porenvolumen als Funktion der Anzahl der Kontakte je Korn berechnen. Gleiches gilt für die Porenziffer.

Anordnung	Kontaktpunkte	PV	3
kubisch	6	47,64%	0,91
hexagonal dichteste Packung	12	25,95%	0,35

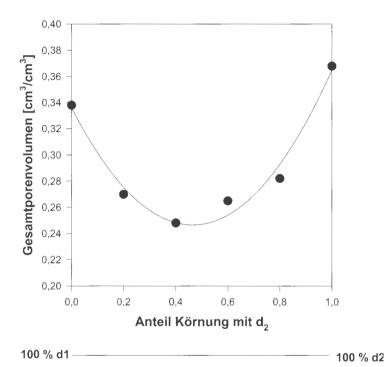
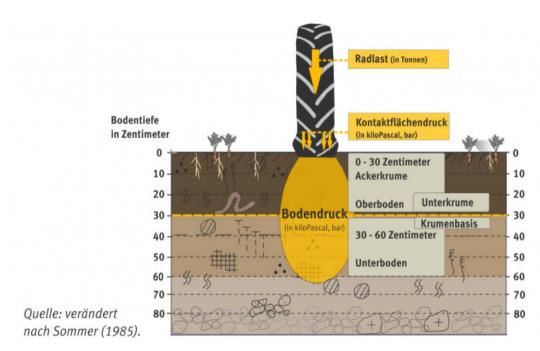

$$PV = \frac{\varepsilon}{1+\varepsilon}$$

Abb. 2.6: Anordnung der Bodenpartikel: a = kubische Anordnung, b = kubisch tetraedrische Packung, c = hexagonal dichteste Packung.

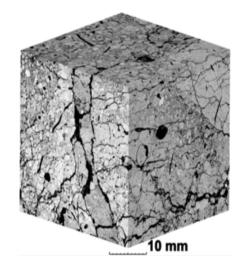
Bachmann et al. 2014

Porenvolumen bei binären Kugelgemischen



Für binäre Gemische ist es möglich die PV der dichtesten Packung aufgrund der Mischungsanteile beider Komponenten vorauszusagen.

Bei Gemischen mit noch mehr unterschiedlichen Partikelgrößen wird dies zunehmend schwierig.


Abb. 2.4: Einfluss des Mischungsverhältnisses von zwei verschiedenen Größenklassen kugeliger Körner auf den Porenanteil (PV). Das Minimum liegt bei einer 1:1- Mischung (v. ENGELHARDT 1960).

Bodenverdichtung

https://www.umweltbundesamt.de/

Gefüge- und Aggregatbildung

https://www.dbges.de/de/dbg-themen/komissionen/k1-bodenphysik-und-bodenhydrologie

Krümelgefüge

Hetrogenisierung der Lagerung

- Austrocknung und Wiederbenässung
- Rissbildung durch Quellung und Schrumpfung (Peloturbation)
- Gefrieren und Tauen (Kryoturbation)
- Bioturbation durch Bodenorganismen
- Verdichtungsvorgänge durch das Wurzelwachstum

=> Aggregate und Hohlräume

Lagerungsdichte, Porenvolumen und Porenziffer in Böden

Tab. 2.1: Häufigste Werte für Lagerungsdichte $\rho_B[g/cm^3]$, Porenvolumen (PV) und Porenziffer ε der Böden (bei 105°C.)

	$ ho_B[g/cm^3]$	PV [%]	$oldsymbol{arepsilon}[-]$
Sandböden	1,67-1,19	37-55	0,58-1,22
Lehmböden	1,96-1,19	26-55	0,25-1,22
Schluffböden	1,53-1,19	42-55	0,72-1,22
Tonböden	1,32-0,92	50-65	1,00-1,85
organ. Böden	0,48-0,12	60-90	1,50-9,00

Bachmann et al. 2014

Die Größe des Porenvolumens (bzw. der Porenziffer) ist von der Korngrößenzusammensetzung, der Form der Körner, dem Gehalt an org. Substanz sowie von der Bodenentwicklung abhängig.

Porengrößenverteilung

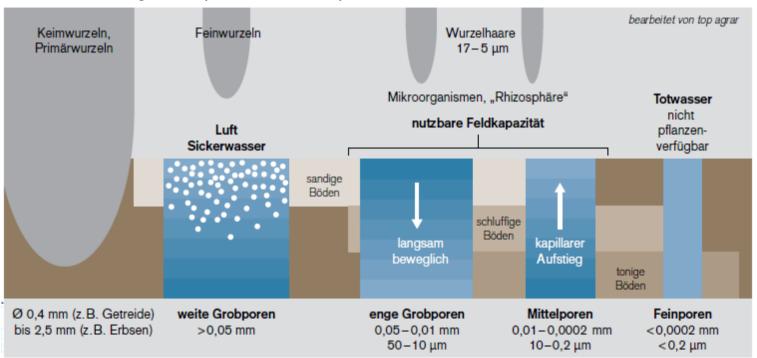
Die Porengrößenverteilung hängt von der Korngrößenverteilung, der Form der Körner und vom Bodengefüge ab.

Porengrößen- bereiche	Poren- durch- messer (µm)	Matrixpoten- zial (hPa)	pF
Grobporen			
weite	> 50	> -60	< 1,8
enge	5010	-60300	1,82,5
Mittelporen	500,2	-30015000	2,54,2
Feinporen	< 0,2	< -15000	> 4,2

Amelung et al., 2018

Die Grenzen zwischen den Porengrößenbereichen sind an charakteristische Kennwerte des Wasserhaushalts angelehnt.

Feinporen: das Wasser ist i.d.R. nicht pflanzenverfügbar.


Mittelporen: das Wasser ist pflanzenverfügbar.

Grobporen: in terrestrischen Böden i.d.R. wasserfrei,

Belüftung des Bodens

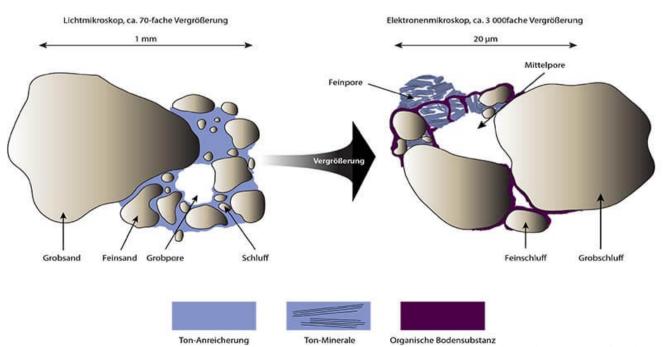
Bodenporen als Lebensraum

Während Keim- und Primärwurzeln in groben Poren und Rissen wachsen, nutzen Wurzelhaare enge Grobporen und Mittelporen zur Wasser- und Nährstoffaufnahme.

Porengrößenverteilung

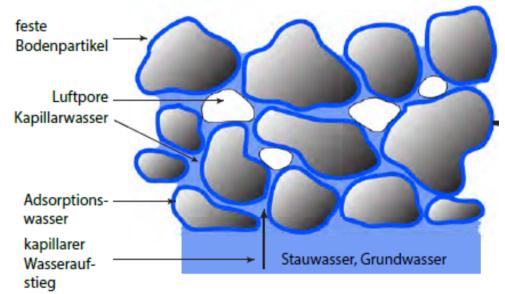
Tab. 6.1–4 Anteil des Porenvolumens und der Porengrößenbereiche am Gesamtvolumen von Mineralböden (C-Gehalt bis 2 %) und organischen Böden.

	Poren- volumen (%)	Grob- poren (%)	Mittel- poren (%)	Fein- poren (%)
Sande	46 ±10	30 ±10	7± 5	5± 3
Schluffe	47 ± 9	15±10	15± 7	15 ± 5
Tone	50 ±15	8 ± 5	10 ± 5	35±10
Anmoore	70 ±10	5± 3	40 ±10	25±10
Hochmoore	85±10	25±10	40 ±10	25±10


organischer Substanz führt besonders bei Sandböden zu einer Erhöhung des Anteils der Mittel- und Feinporen. Ihr Ausmaß ist von der Form und dem Humifizierungsgrad der organischen Stoffe abhängig.

Fin zunehmender Gehalt der Böden an

Amelung et al., 2018

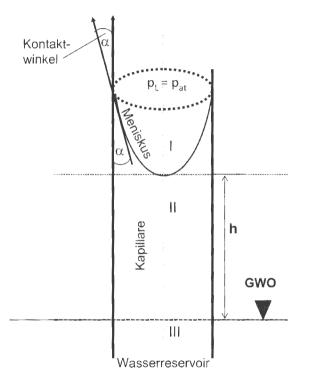

Fein-, Mittel- und Grobporen

Körnung und Porung eines Mikrogefüges

Adsorptions- und Kapillarwasser

Die Bindung des Wassers, das gegen den Einfluss der Schwerkraft im Boden verbleibt, beruht auf der Wirkung verschiedener Kräfte zwischen den festen Bodenteilchen und den Wassermolekülen sowie zwischen den Wassermolekülen selbst. Nach der Art dieser Kräfte kann man das Bodenwasser in Adsorptions- und Kapillarwasser unterteilen.

https://www.natur-erforschen.net/


Adsorptionswasser:

umhüllt die feste Oberfläche der Teilchen. Adsorptionskräfte zwischen der Festsubstanz und den Wassermolekülen.

Kapillarwasser:

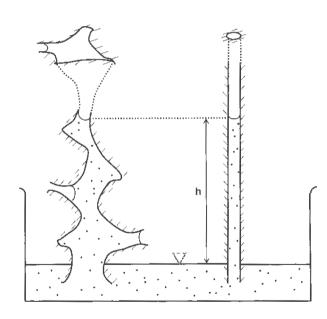
Bildung von Menisken. Tendenz der Grenzfläche zwischen Wasser und Luft, sich zu verkleinern, weil hierdurch wegen der hohen Grenzflächenspannung von Wasser gegenüber Luft ein energieärmerer Zustand erreicht wird.

Kapillarer Aufstieg

Bachmann et al. 2014

= Kapillare Steighöhe, Kapillarhub

Höhe, die das Grundwasser bei gegebener Wasserspannung zu steigen in der Lage ist.


Unmittelbar über dem Grundwasser existiert ein von Menisken getragener, geschlossener Kapillarwassersaum, in dem alle Feinporen wassergefüllt sind.

Konkaver Meniskus in einer Messpipette

(https://www.brand.de/)

Kapillarer Aufstieg

Bachmann et al. 2014

Äquivalentdurchmesser einer Pore als Ersatzwert. Er gibt den Durchmesser der ebenen Kreiskapillare an, in der der Kapillaraufstieg (h) ebenso hoch ist wie in der betreffenden Bodenpore.

Young-Laplace-Gleichung des kapillaren Aufstiegs in Röhrchen mit kreisförmigem Querschnitt (r = Radius):

$2 \cdot \gamma \cdot \cos(\alpha)$	У	Oberflächenspannung
$r - \frac{1}{h \cdot \rho \cdot a}$	$ ho_{\sf w}$	Dichte des Wassers
$h \cdot \rho_w \cdot g$	α	Benetzungswinkel
	g	Erdbeschleunigung
	h	kapillarer Aufstieg
	r	Porenradius

Das Potenzial des Bodenwassers

Potenzial: die Arbeit, die notwendig ist, um eine Einheitsmenge (Volumen, Masse oder Gewicht) Wasser von einem gegebenen Punkt eines Kraftfeldes zu einem Bezugspunkt zu transportieren. Diese Arbeit entspricht derjenigen, die notwendig ist, um die Mengeneinheit Wasser von einer freien Wasserfläche auf eine bestimmte Höhe in einer Pore (Kapillare) zu heben oder in dieser der Bodenmatrix zu entziehen.

$\psi = m \cdot b \cdot h$	m	Masse des Wassers
Ψ υ	b	die Beschleunigung (im Freiland stets die Erdbeschleunigung)
	h	die Höhe über einer freien Wasserfläche (im Freiland die GWO).

$\psi = \rho \cdot b \cdot h$	Volumen als Bezugseinheit (ρ = Dichte), ψ erhält die Dimension eines Drucks : hPa
$\psi = h$	Gewicht des Wassers (<i>m</i> · <i>b</i>) als Bezugsgröße, ψ erhält die Dimension einer Länge : cm Wassersäule

Das Potenzial des Bodenwassers

$$\psi = \psi_z + \psi_m + \psi_o + \psi_\Omega$$

Das Gesamtpotenzial ist die Summe aller Teilpotenziale, die durch die verschiedenen, im Boden auftretenden Kräfte hervorgerufen werden. Bezugspunkt GWO.

$$\psi_H = \psi_z + \psi_m$$

Das hydraulische Potenzial

Gravitationspotenzial ψ_z : Arbeit, die aufgewendet werden muss, um eine bestimmte Menge Wasser von einem Bezugsniveau auf eine bestimmte Höhe anzuheben. An der Wasseroberfläche ist $\psi_z = 0$ und weist mit zunehmendem Abstand nach oben positivere Werte auf.


Matrixpotenzial ψ_m (negativer Porenwasserdruck): Maß für den Einfluss der Matrix. Je weniger Wasser ein Boden enthält, desto stärker halten die matrixbedingten Kräfte es fest. Negatives Vorzeichen, da die Auswirkung dieses Potenzials auf das Wasser dem des Gravitationspotenzials entgegengesetzt ist.

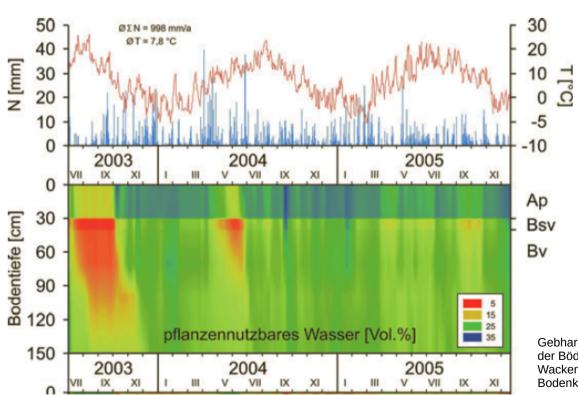
Osmotisches Potenzial (ψ_o): in nicht salzhaltigen Böden vernachlässigbar

Auflastpotenzial (ψ_{Ω}): entsteht durch räumlich begrenzte Last. Kann das Wasser nicht unmittelbar entweichen, trägt es einen Teil der Last (Ausgleich in wenigen Stunden, Tagen, Jahren). Eine separate Messung ist kaum möglich, zumeist bei Messung des Matrixpotenzials mit erfasst.

Matrixpotenzial-Wassergehaltskurve

pF-WG-Kurve Wasserretentionskurve Wasserspannungskurve

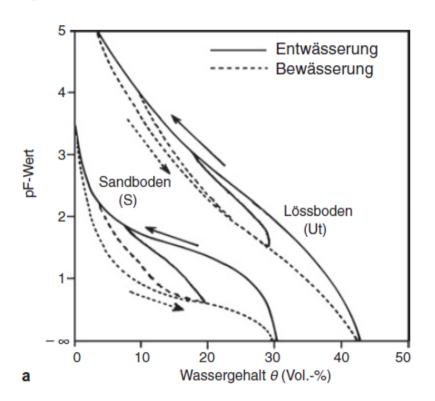
Amelung et al., 2018


Beziehung zwischen Matrixpotenzial und Wassergehalt, bei einem Sandboden, einem tonigen Schluffboden (Lössboden) und einem Tonboden (A-Horizonte).

FK = Feldkapazität
PWP = permanenter Welkepunkt
LK = Luftkapazität
Der **pF-Wert** entspricht dem logarithmierten
Wert des Betrages des Matrixpotenzials.

nutzbare Feldkapazität (nFK):

- Wassergehalt des Bodens entsprechend dem Wasserspannungsbereich auf der Wasserspannungskurve zwischen FK (pF = 1,8...2,5) und PWP (pF = 4,2)
- kennzeichnet den pflanzenverfügbaren Anteil des Bodenwassers


Jahresgänge der pflanzenverfügbaren Wassermenge

Jahresgänge der pflanzenverfügbaren Wassermenge in einer podsoligen Braunerde unter Ackernutzung.

Gebhardt, S. (2007): Wasserhaushalt und Funktionen der Böden im Grundwasserabsenkbereich des Wasserwerkes Wacken in Schleswig Holstein. Schriftenr Inst Pflanzenernähr & Bodenk. CAU Kiel, H. 75

Hysteresis

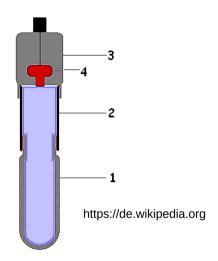
Die Matrixpotenzial-Wassergehaltskurve ist auch von der Richtung der Wassergehaltsänderung abhängig.

Für Be- und Entwässerungsverlauf ergeben sich verschiedene Kurven: **Hysteresis**

Amelung et al., 2018

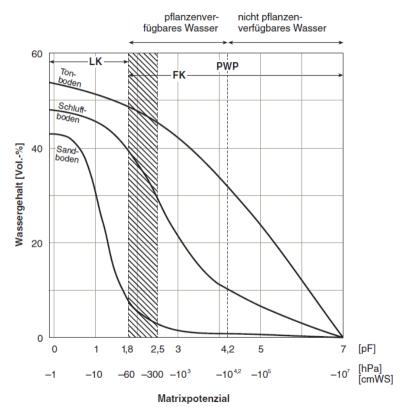
Messen der Matrixpotenzial-Wassergehaltskurve

Stechzylinder auf einer keramischen Platte mit hängender Wassersäule



HYPROP

https://metergroup.com


Tensiometer

Tensiometer mit (1) poröse Keramikzelle,

- (2) wassergefülltes Schauglas, (3) Elektronik,
- (4) Drucksensor

Mathematische Beschreibung der pF-WG-Kurven

Amelung et al., 2018

Van Genuchten (1980):

$$\theta(\psi_m) = \theta_r + \frac{\theta_s - \theta_r}{\left[1 + (\alpha \cdot \psi_m)^n\right]^m}$$

 $\theta(\psi_m)$ der zum Matrixpotenzial zuzuordnende

Wassergehalt [cm³/ cm³]

θ_s Wassergehalt bei Sättigung

 θ_r Restwassergehalt bei $\geq pF$ von 4,2

α Kehrwert des Matrixpotenzials bei

steilstem Kurvenverlauf. 1/α definiert den

Lufteintrittspunkt.

n, m Formparameter (Kurvenverlauf)

ohne physikalische Bedeutung

Van Genuchten, M. T. (1980): A closed-from equation for predicting the hydraulic conductivity of unsaturated soils. Soil Sci. Soc. Amer. J. 44, 892-898.

Abschätzen der nFK nach KA6

Tabelle B5: Luftkapazität, Feldkapazität und nutzbare Feldkapazität in Abhängigkeit von Bodenart,
Trockenrohdichte und Feuchtigkeitsäquivalent (FÄ) (Renger et al. 2009) (Angaben in Vol.-%)

Bodenart	L	uftge	LK, halt b	eim I	Ä	FK, nFK, Wassergehalt beim FÄ Wassergehaltsdiffer zwischen FÄ und pl							FĹ pF*			
						Troc	kenro	hdicl	nte [g	cm ⁻³]						
	1,1	1,3	1,5	1,7	1,9	1,1	1,3	1,5	1,7	1,9	1,1	1,3	1,5	1,7	1,9	
Ss		40	32	24			11	12	13			9	10	11		1,9
Sl2		32	26	19	13		19	18	18	17		13	12	12	11	2,0
Sl3		27	22	15	10		24	22	22	20		15	13	12	10	2,0
Sl4		26	20	14	9		25	24	23	21		14	13	12	10	2,1
Slu		21	15	9	4		30	29	28	26		19	18	16	14	2,1
St2		35	28	21	14		16	16	16	16		10	10	10	9	2,1
St3		29	23	17	11		22	21	20	19		11	10	9	9	2,2
Su2		33	27	21	15		18	17	16	15		13	12	11	10	2,1
Su3		27	22	16	10		24	22	21	20		17	14	13	12	2,1
Su4		23	17	12	6		28	27	25	24		20	19	17	15	2,1
Ls2	24	18	13	7	3	35	33	31	30	27	19	17	15	14	11	2,1
Ls3	25	19	14	9	4	34	32	30	28	25	19	17	15	13	11	2,1
T 4		00	4.0	40	_		~~		~ =							

Bodeneigenschaften, deren Messaufwand hoch ist, lassen sich aus anderen Bodeneigenschaften ableiten.

Eine Tabelle, wie sie in der KA6 enthalten ist, ist die einfachste Form einer Pedotransferfunktion (PTF).

Ad-hoc-AG Boden 2024: Bodenkundliche Kartieranleitung

Pedotransferfunktion: ROSETTA

Journal of Hydrology

Volume 251, Issues 3–4, 1 October 2001, Pages 163-176

ROSETTA: a computer program for estimating soil hydraulic parameters with hierarchical pedotransfer functions

Marcel G. Schaap $\stackrel{\diamond}{\sim} \boxtimes$, Feike J. Leij, Martinus Th. van Genuchten

Künstliches neuronales Netz

Wasserretention in Abhängigkeit von Bodentextur, Lagerungsdichte und C_{org}

Bei allen PTF gilt zu beachten:

Datengrundlage (Böden, Landnutzung, Datensatzgröße)

Aufgabe

Eine mittels Stechzylinder entnommene Bodenprobe mit einem Gesamtvolumen von 100 cm³ wurde im Labor für 3 Tage bei 105°C getrocknet. Damit ist die Probe frei von Wasser, alle Poren sind luftgefüllt.

Das Gewicht der getrockneten Probe (= Masse der Festsubstanz) lag bei 165 g. da es sich um eine sandige (=quarzreiche) Probe handelt, können Sie eine Festsubstanzdichte von 2,65 g cm⁻³ annehmen.

Berechnen Sie bitte die Lagerungsdichte und das Porenvolumen der Probe!

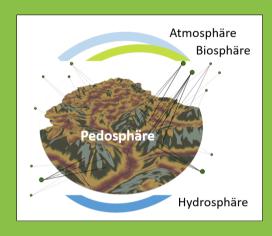
Zusammenfassung

- Porenraum, Porenvolumen, Porenziffer
- Gefüge- und Aggregatbildung
- Porengrößenverteilung
- Kapillarer Auftstieg
- Wasserpotenzial
- Matrixpotenzial-Wassergehaltskurve
- pflanzenverfügbares Wasser, nutzbare Feldkapazität
- Pedotransferfunktion

Quellen

Ad-hoc-AG Boden (2024). Bodenkundliche Kartieranleitung, KA6. Band 1 & Band 2. Hannover. ISBN 978-3-510-96869-5

Amelung, W., Blume, H.-P., Fleige, H. et al. (2018). Scheffer/ Schachtschabel. Lehrbuch der Bodenkunde. 17. Auflage, Springer Spektrum, Berlin. ISBN 978-3-662-55870-6


Bachmann, J., Horn, R., Peth, S. (2014). Hartge/Horn Einführung in die Bodenphysik. 4. Aufl., Schweizerbart, Stuttgart. ISBN 978-3-510-65280-8

DANKE

für die Aufmerksamkeit!

Prof. Dr. Mareike Ließ

WS 25/26

Applied Sciences for Like